Metamath Proof Explorer


Theorem funcestrcsetclem1

Description: Lemma 1 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
Assertion funcestrcsetclem1 ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) = ( Base ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
2 funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
4 funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
5 funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
6 funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 6 adantr ( ( 𝜑𝑋𝐵 ) → 𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
8 fveq2 ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) )
9 8 adantl ( ( ( 𝜑𝑋𝐵 ) ∧ 𝑥 = 𝑋 ) → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) )
10 simpr ( ( 𝜑𝑋𝐵 ) → 𝑋𝐵 )
11 fvexd ( ( 𝜑𝑋𝐵 ) → ( Base ‘ 𝑋 ) ∈ V )
12 7 9 10 11 fvmptd ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) = ( Base ‘ 𝑋 ) )