Metamath Proof Explorer


Theorem funcestrcsetclem8

Description: Lemma 8 for funcestrcsetc . (Contributed by AV, 15-Feb-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion funcestrcsetclem8 φXBYBXGY:XHomEYFXHomSFY

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 f1oi IBaseYBaseX:BaseYBaseX1-1 ontoBaseYBaseX
9 f1of IBaseYBaseX:BaseYBaseX1-1 ontoBaseYBaseXIBaseYBaseX:BaseYBaseXBaseYBaseX
10 8 9 mp1i φXBYBIBaseYBaseX:BaseYBaseXBaseYBaseX
11 elmapi fBaseYBaseXf:BaseXBaseY
12 fvex BaseYV
13 fvex BaseXV
14 12 13 pm3.2i BaseYVBaseXV
15 elmapg BaseYVBaseXVfBaseYBaseXf:BaseXBaseY
16 15 bicomd BaseYVBaseXVf:BaseXBaseYfBaseYBaseX
17 14 16 mp1i φXBYBf:BaseXBaseYfBaseYBaseX
18 17 biimpa φXBYBf:BaseXBaseYfBaseYBaseX
19 1 2 3 4 5 6 funcestrcsetclem1 φYBFY=BaseY
20 19 adantrl φXBYBFY=BaseY
21 1 2 3 4 5 6 funcestrcsetclem1 φXBFX=BaseX
22 21 adantrr φXBYBFX=BaseX
23 20 22 oveq12d φXBYBFYFX=BaseYBaseX
24 23 adantr φXBYBf:BaseXBaseYFYFX=BaseYBaseX
25 18 24 eleqtrrd φXBYBf:BaseXBaseYfFYFX
26 25 ex φXBYBf:BaseXBaseYfFYFX
27 11 26 syl5 φXBYBfBaseYBaseXfFYFX
28 27 ssrdv φXBYBBaseYBaseXFYFX
29 10 28 fssd φXBYBIBaseYBaseX:BaseYBaseXFYFX
30 eqid BaseX=BaseX
31 eqid BaseY=BaseY
32 1 2 3 4 5 6 7 30 31 funcestrcsetclem5 φXBYBXGY=IBaseYBaseX
33 5 adantr φXBYBUWUni
34 eqid HomE=HomE
35 1 5 estrcbas φU=BaseE
36 3 35 eqtr4id φB=U
37 36 eleq2d φXBXU
38 37 biimpcd XBφXU
39 38 adantr XBYBφXU
40 39 impcom φXBYBXU
41 36 eleq2d φYBYU
42 41 biimpd φYBYU
43 42 adantld φXBYBYU
44 43 imp φXBYBYU
45 1 33 34 40 44 30 31 estrchom φXBYBXHomEY=BaseYBaseX
46 eqid HomS=HomS
47 1 2 3 4 5 6 funcestrcsetclem2 φXBFXU
48 47 adantrr φXBYBFXU
49 1 2 3 4 5 6 funcestrcsetclem2 φYBFYU
50 49 adantrl φXBYBFYU
51 2 33 46 48 50 setchom φXBYBFXHomSFY=FYFX
52 32 45 51 feq123d φXBYBXGY:XHomEYFXHomSFYIBaseYBaseX:BaseYBaseXFYFX
53 29 52 mpbird φXBYBXGY:XHomEYFXHomSFY