Step |
Hyp |
Ref |
Expression |
1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcestrcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
8 |
|
f1oi |
⊢ ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) –1-1-onto→ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) |
9 |
|
f1of |
⊢ ( ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) –1-1-onto→ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
10 |
8 9
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
11 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
12 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
13 |
|
fvex |
⊢ ( Base ‘ 𝑋 ) ∈ V |
14 |
12 13
|
pm3.2i |
⊢ ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) |
15 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↔ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
16 |
15
|
bicomd |
⊢ ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
17 |
14 16
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
18 |
17
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
19 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
20 |
19
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
21 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
22 |
21
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
23 |
20 22
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
25 |
18 24
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
27 |
11 26
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝑓 ∈ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
28 |
27
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
29 |
10 28
|
fssd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
32 |
1 2 3 4 5 6 7 30 31
|
funcestrcsetclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
33 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
34 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
35 |
1 5
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
36 |
3 35
|
eqtr4id |
⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
37 |
36
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |
38 |
37
|
biimpcd |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
40 |
39
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑈 ) |
41 |
36
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈 ) ) |
42 |
41
|
biimpd |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 → 𝑌 ∈ 𝑈 ) ) |
43 |
42
|
adantld |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝑈 ) ) |
44 |
43
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝑈 ) |
45 |
1 33 34 40 44 30 31
|
estrchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
46 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
47 |
1 2 3 4 5 6
|
funcestrcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
48 |
47
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
49 |
1 2 3 4 5 6
|
funcestrcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
50 |
49
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
51 |
2 33 46 48 50
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) |
52 |
32 45 51
|
feq123d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( I ↾ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) : ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ↑m ( 𝐹 ‘ 𝑋 ) ) ) ) |
53 |
29 52
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑌 ) ) ) |