Metamath Proof Explorer


Theorem funcestrcsetclem5

Description: Lemma 5 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
funcestrcsetc.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) )
funcestrcsetc.m 𝑀 = ( Base ‘ 𝑋 )
funcestrcsetc.n 𝑁 = ( Base ‘ 𝑌 )
Assertion funcestrcsetclem5 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁m 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
2 funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
4 funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
5 funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
6 funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 funcestrcsetc.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) )
8 funcestrcsetc.m 𝑀 = ( Base ‘ 𝑋 )
9 funcestrcsetc.n 𝑁 = ( Base ‘ 𝑌 )
10 7 adantr ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) )
11 fveq2 ( 𝑦 = 𝑌 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑌 ) )
12 fveq2 ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) )
13 11 12 oveqan12rd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) )
14 9 8 oveq12i ( 𝑁m 𝑀 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) )
15 13 14 eqtr4di ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝑁m 𝑀 ) )
16 15 reseq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( 𝑁m 𝑀 ) ) )
17 16 adantl ( ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( 𝑁m 𝑀 ) ) )
18 simprl ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
19 simprr ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑌𝐵 )
20 ovexd ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑁m 𝑀 ) ∈ V )
21 20 resiexd ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( I ↾ ( 𝑁m 𝑀 ) ) ∈ V )
22 10 17 18 19 21 ovmpod ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁m 𝑀 ) ) )