Step |
Hyp |
Ref |
Expression |
1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcestrcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
8 |
|
funcestrcsetc.m |
⊢ 𝑀 = ( Base ‘ 𝑋 ) |
9 |
|
funcestrcsetc.n |
⊢ 𝑁 = ( Base ‘ 𝑌 ) |
10 |
1 2 3 4 5 6 7 8 9
|
funcestrcsetclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
12 |
11
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) ) |
13 |
|
fvresi |
⊢ ( 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) → ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) = 𝐻 ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ‘ 𝐻 ) = 𝐻 ) |
15 |
12 14
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑁 ↑m 𝑀 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |