Metamath Proof Explorer


Theorem fullestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
funcestrcsetc.g φ G = x B , y B I Base y Base x
Assertion fullestrcsetc φ F E Full S G

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 funcestrcsetc.g φ G = x B , y B I Base y Base x
8 1 2 3 4 5 6 7 funcestrcsetc φ F E Func S G
9 1 2 3 4 5 6 7 funcestrcsetclem8 φ a B b B a G b : a Hom E b F a Hom S F b
10 5 adantr φ a B b B U WUni
11 eqid Hom S = Hom S
12 1 2 3 4 5 6 funcestrcsetclem2 φ a B F a U
13 12 adantrr φ a B b B F a U
14 1 2 3 4 5 6 funcestrcsetclem2 φ b B F b U
15 14 adantrl φ a B b B F b U
16 2 10 11 13 15 elsetchom φ a B b B h F a Hom S F b h : F a F b
17 1 2 3 4 5 6 funcestrcsetclem1 φ a B F a = Base a
18 17 adantrr φ a B b B F a = Base a
19 1 2 3 4 5 6 funcestrcsetclem1 φ b B F b = Base b
20 19 adantrl φ a B b B F b = Base b
21 18 20 feq23d φ a B b B h : F a F b h : Base a Base b
22 16 21 bitrd φ a B b B h F a Hom S F b h : Base a Base b
23 fvex Base b V
24 fvex Base a V
25 23 24 pm3.2i Base b V Base a V
26 elmapg Base b V Base a V h Base b Base a h : Base a Base b
27 25 26 mp1i φ a B b B h Base b Base a h : Base a Base b
28 27 biimpar φ a B b B h : Base a Base b h Base b Base a
29 equequ2 k = h h = k h = h
30 29 adantl φ a B b B h : Base a Base b k = h h = k h = h
31 eqidd φ a B b B h : Base a Base b h = h
32 28 30 31 rspcedvd φ a B b B h : Base a Base b k Base b Base a h = k
33 eqid Base a = Base a
34 eqid Base b = Base b
35 1 2 3 4 5 6 7 33 34 funcestrcsetclem6 φ a B b B k Base b Base a a G b k = k
36 35 3expa φ a B b B k Base b Base a a G b k = k
37 36 eqeq2d φ a B b B k Base b Base a h = a G b k h = k
38 37 rexbidva φ a B b B k Base b Base a h = a G b k k Base b Base a h = k
39 38 adantr φ a B b B h : Base a Base b k Base b Base a h = a G b k k Base b Base a h = k
40 32 39 mpbird φ a B b B h : Base a Base b k Base b Base a h = a G b k
41 eqid Hom E = Hom E
42 1 5 estrcbas φ U = Base E
43 3 42 eqtr4id φ B = U
44 43 eleq2d φ a B a U
45 44 biimpcd a B φ a U
46 45 adantr a B b B φ a U
47 46 impcom φ a B b B a U
48 43 eleq2d φ b B b U
49 48 biimpcd b B φ b U
50 49 adantl a B b B φ b U
51 50 impcom φ a B b B b U
52 1 10 41 47 51 33 34 estrchom φ a B b B a Hom E b = Base b Base a
53 52 rexeqdv φ a B b B k a Hom E b h = a G b k k Base b Base a h = a G b k
54 53 adantr φ a B b B h : Base a Base b k a Hom E b h = a G b k k Base b Base a h = a G b k
55 40 54 mpbird φ a B b B h : Base a Base b k a Hom E b h = a G b k
56 55 ex φ a B b B h : Base a Base b k a Hom E b h = a G b k
57 22 56 sylbid φ a B b B h F a Hom S F b k a Hom E b h = a G b k
58 57 ralrimiv φ a B b B h F a Hom S F b k a Hom E b h = a G b k
59 dffo3 a G b : a Hom E b onto F a Hom S F b a G b : a Hom E b F a Hom S F b h F a Hom S F b k a Hom E b h = a G b k
60 9 58 59 sylanbrc φ a B b B a G b : a Hom E b onto F a Hom S F b
61 60 ralrimivva φ a B b B a G b : a Hom E b onto F a Hom S F b
62 3 11 41 isfull2 F E Full S G F E Func S G a B b B a G b : a Hom E b onto F a Hom S F b
63 8 61 62 sylanbrc φ F E Full S G