Metamath Proof Explorer


Theorem fullestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion fullestrcsetc φFEFullSG

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 1 2 3 4 5 6 7 funcestrcsetc φFEFuncSG
9 1 2 3 4 5 6 7 funcestrcsetclem8 φaBbBaGb:aHomEbFaHomSFb
10 5 adantr φaBbBUWUni
11 eqid HomS=HomS
12 1 2 3 4 5 6 funcestrcsetclem2 φaBFaU
13 12 adantrr φaBbBFaU
14 1 2 3 4 5 6 funcestrcsetclem2 φbBFbU
15 14 adantrl φaBbBFbU
16 2 10 11 13 15 elsetchom φaBbBhFaHomSFbh:FaFb
17 1 2 3 4 5 6 funcestrcsetclem1 φaBFa=Basea
18 17 adantrr φaBbBFa=Basea
19 1 2 3 4 5 6 funcestrcsetclem1 φbBFb=Baseb
20 19 adantrl φaBbBFb=Baseb
21 18 20 feq23d φaBbBh:FaFbh:BaseaBaseb
22 16 21 bitrd φaBbBhFaHomSFbh:BaseaBaseb
23 fvex BasebV
24 fvex BaseaV
25 23 24 pm3.2i BasebVBaseaV
26 elmapg BasebVBaseaVhBasebBaseah:BaseaBaseb
27 25 26 mp1i φaBbBhBasebBaseah:BaseaBaseb
28 27 biimpar φaBbBh:BaseaBasebhBasebBasea
29 equequ2 k=hh=kh=h
30 29 adantl φaBbBh:BaseaBasebk=hh=kh=h
31 eqidd φaBbBh:BaseaBasebh=h
32 28 30 31 rspcedvd φaBbBh:BaseaBasebkBasebBaseah=k
33 eqid Basea=Basea
34 eqid Baseb=Baseb
35 1 2 3 4 5 6 7 33 34 funcestrcsetclem6 φaBbBkBasebBaseaaGbk=k
36 35 3expa φaBbBkBasebBaseaaGbk=k
37 36 eqeq2d φaBbBkBasebBaseah=aGbkh=k
38 37 rexbidva φaBbBkBasebBaseah=aGbkkBasebBaseah=k
39 38 adantr φaBbBh:BaseaBasebkBasebBaseah=aGbkkBasebBaseah=k
40 32 39 mpbird φaBbBh:BaseaBasebkBasebBaseah=aGbk
41 eqid HomE=HomE
42 1 5 estrcbas φU=BaseE
43 3 42 eqtr4id φB=U
44 43 eleq2d φaBaU
45 44 biimpcd aBφaU
46 45 adantr aBbBφaU
47 46 impcom φaBbBaU
48 43 eleq2d φbBbU
49 48 biimpcd bBφbU
50 49 adantl aBbBφbU
51 50 impcom φaBbBbU
52 1 10 41 47 51 33 34 estrchom φaBbBaHomEb=BasebBasea
53 52 rexeqdv φaBbBkaHomEbh=aGbkkBasebBaseah=aGbk
54 53 adantr φaBbBh:BaseaBasebkaHomEbh=aGbkkBasebBaseah=aGbk
55 40 54 mpbird φaBbBh:BaseaBasebkaHomEbh=aGbk
56 55 ex φaBbBh:BaseaBasebkaHomEbh=aGbk
57 22 56 sylbid φaBbBhFaHomSFbkaHomEbh=aGbk
58 57 ralrimiv φaBbBhFaHomSFbkaHomEbh=aGbk
59 dffo3 aGb:aHomEbontoFaHomSFbaGb:aHomEbFaHomSFbhFaHomSFbkaHomEbh=aGbk
60 9 58 59 sylanbrc φaBbBaGb:aHomEbontoFaHomSFb
61 60 ralrimivva φaBbBaGb:aHomEbontoFaHomSFb
62 3 11 41 isfull2 FEFullSGFEFuncSGaBbBaGb:aHomEbontoFaHomSFb
63 8 61 62 sylanbrc φFEFullSG