| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcestrcsetc.e |  | 
						
							| 2 |  | funcestrcsetc.s |  | 
						
							| 3 |  | funcestrcsetc.b |  | 
						
							| 4 |  | funcestrcsetc.c |  | 
						
							| 5 |  | funcestrcsetc.u |  | 
						
							| 6 |  | funcestrcsetc.f |  | 
						
							| 7 |  | funcestrcsetc.g |  | 
						
							| 8 |  | equivestrcsetc.i |  | 
						
							| 9 | 1 2 3 4 5 6 7 | fthestrcsetc |  | 
						
							| 10 | 1 2 3 4 5 6 7 | fullestrcsetc |  | 
						
							| 11 | 2 5 | setcbas |  | 
						
							| 12 | 4 11 | eqtr4id |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 5 8 | 1strwunbndx |  | 
						
							| 16 | 15 | ex |  | 
						
							| 17 | 13 16 | sylbid |  | 
						
							| 18 | 17 | imp |  | 
						
							| 19 | 1 5 | estrcbas |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 3 20 | eqtr4id |  | 
						
							| 22 | 18 21 | eleqtrrd |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 23 | f1oeq3d |  | 
						
							| 25 | 24 | exbidv |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 |  | f1oi |  | 
						
							| 28 | 1 2 3 4 5 6 | funcestrcsetclem1 |  | 
						
							| 29 | 22 28 | syldan |  | 
						
							| 30 | 14 | 1strbas |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 29 31 | eqtr4d |  | 
						
							| 33 | 32 | f1oeq3d |  | 
						
							| 34 | 27 33 | mpbiri |  | 
						
							| 35 |  | resiexg |  | 
						
							| 36 | 35 | elv |  | 
						
							| 37 |  | f1oeq1 |  | 
						
							| 38 | 36 37 | spcev |  | 
						
							| 39 | 34 38 | syl |  | 
						
							| 40 | 22 26 39 | rspcedvd |  | 
						
							| 41 | 40 | ralrimiva |  | 
						
							| 42 | 9 10 41 | 3jca |  |