Metamath Proof Explorer


Theorem setc1strwun

Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses setc1strwun.s S = SetCat U
setc1strwun.c C = Base S
setc1strwun.u φ U WUni
setc1strwun.o φ ω U
Assertion setc1strwun φ X C Base ndx X U

Proof

Step Hyp Ref Expression
1 setc1strwun.s S = SetCat U
2 setc1strwun.c C = Base S
3 setc1strwun.u φ U WUni
4 setc1strwun.o φ ω U
5 1 3 setcbas φ U = Base S
6 2 5 eqtr4id φ C = U
7 6 eleq2d φ X C X U
8 7 biimpa φ X C X U
9 eqid Base ndx X = Base ndx X
10 9 3 4 1strwun φ X U Base ndx X U
11 8 10 syldan φ X C Base ndx X U