Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
funcsetcestrclem1
Next ⟩
funcsetcestrclem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcsetcestrclem1
Description:
Lemma 1 for
funcsetcestrc
.
(Contributed by
AV
, 27-Mar-2020)
Ref
Expression
Hypotheses
funcsetcestrc.s
⊢
S
=
SetCat
⁡
U
funcsetcestrc.c
⊢
C
=
Base
S
funcsetcestrc.f
⊢
φ
→
F
=
x
∈
C
⟼
Base
ndx
x
Assertion
funcsetcestrclem1
⊢
φ
∧
X
∈
C
→
F
⁡
X
=
Base
ndx
X
Proof
Step
Hyp
Ref
Expression
1
funcsetcestrc.s
⊢
S
=
SetCat
⁡
U
2
funcsetcestrc.c
⊢
C
=
Base
S
3
funcsetcestrc.f
⊢
φ
→
F
=
x
∈
C
⟼
Base
ndx
x
4
3
adantr
⊢
φ
∧
X
∈
C
→
F
=
x
∈
C
⟼
Base
ndx
x
5
opeq2
⊢
x
=
X
→
Base
ndx
x
=
Base
ndx
X
6
5
sneqd
⊢
x
=
X
→
Base
ndx
x
=
Base
ndx
X
7
6
adantl
⊢
φ
∧
X
∈
C
∧
x
=
X
→
Base
ndx
x
=
Base
ndx
X
8
simpr
⊢
φ
∧
X
∈
C
→
X
∈
C
9
snex
⊢
Base
ndx
X
∈
V
10
9
a1i
⊢
φ
∧
X
∈
C
→
Base
ndx
X
∈
V
11
4
7
8
10
fvmptd
⊢
φ
∧
X
∈
C
→
F
⁡
X
=
Base
ndx
X