Metamath Proof Explorer


Theorem funcsetcestrclem1

Description: Lemma 1 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
Assertion funcsetcestrclem1 φ X C F X = Base ndx X

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 3 adantr φ X C F = x C Base ndx x
5 opeq2 x = X Base ndx x = Base ndx X
6 5 sneqd x = X Base ndx x = Base ndx X
7 6 adantl φ X C x = X Base ndx x = Base ndx X
8 simpr φ X C X C
9 snex Base ndx X V
10 9 a1i φ X C Base ndx X V
11 4 7 8 10 fvmptd φ X C F X = Base ndx X