Metamath Proof Explorer


Theorem funcsetcestrclem1

Description: Lemma 1 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
Assertion funcsetcestrclem1 ( ( 𝜑𝑋𝐶 ) → ( 𝐹𝑋 ) = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 3 adantr ( ( 𝜑𝑋𝐶 ) → 𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
5 opeq2 ( 𝑥 = 𝑋 → ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ )
6 5 sneqd ( 𝑥 = 𝑋 → { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } )
7 6 adantl ( ( ( 𝜑𝑋𝐶 ) ∧ 𝑥 = 𝑋 ) → { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } )
8 simpr ( ( 𝜑𝑋𝐶 ) → 𝑋𝐶 )
9 snex { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ V
10 9 a1i ( ( 𝜑𝑋𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ V )
11 4 7 8 10 fvmptd ( ( 𝜑𝑋𝐶 ) → ( 𝐹𝑋 ) = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } )