Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
Assertion | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
6 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
7 | 1 2 4 5 | setc1strwun | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
8 | 6 7 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |