Metamath Proof Explorer


Theorem funcsetcestrclem2

Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
Assertion funcsetcestrclem2 ( ( 𝜑𝑋𝐶 ) → ( 𝐹𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 1 2 3 funcsetcestrclem1 ( ( 𝜑𝑋𝐶 ) → ( 𝐹𝑋 ) = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } )
7 1 2 4 5 setc1strwun ( ( 𝜑𝑋𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ 𝑈 )
8 6 7 eqeltrd ( ( 𝜑𝑋𝐶 ) → ( 𝐹𝑋 ) ∈ 𝑈 )