Metamath Proof Explorer


Theorem setc1strwun

Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses setc1strwun.s 𝑆 = ( SetCat ‘ 𝑈 )
setc1strwun.c 𝐶 = ( Base ‘ 𝑆 )
setc1strwun.u ( 𝜑𝑈 ∈ WUni )
setc1strwun.o ( 𝜑 → ω ∈ 𝑈 )
Assertion setc1strwun ( ( 𝜑𝑋𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 setc1strwun.s 𝑆 = ( SetCat ‘ 𝑈 )
2 setc1strwun.c 𝐶 = ( Base ‘ 𝑆 )
3 setc1strwun.u ( 𝜑𝑈 ∈ WUni )
4 setc1strwun.o ( 𝜑 → ω ∈ 𝑈 )
5 1 3 setcbas ( 𝜑𝑈 = ( Base ‘ 𝑆 ) )
6 2 5 eqtr4id ( 𝜑𝐶 = 𝑈 )
7 6 eleq2d ( 𝜑 → ( 𝑋𝐶𝑋𝑈 ) )
8 7 biimpa ( ( 𝜑𝑋𝐶 ) → 𝑋𝑈 )
9 eqid { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ }
10 9 3 4 1strwun ( ( 𝜑𝑋𝑈 ) → { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ 𝑈 )
11 8 10 syldan ( ( 𝜑𝑋𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑋 ⟩ } ∈ 𝑈 )