| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setc1strwun.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 2 |
|
setc1strwun.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 3 |
|
setc1strwun.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 4 |
|
setc1strwun.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 5 |
1 3
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 6 |
2 5
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 8 |
7
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) |
| 9 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } |
| 10 |
9 3 4
|
1strwun |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
| 11 |
8 10
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |