| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setc1strwun.s |  |-  S = ( SetCat ` U ) | 
						
							| 2 |  | setc1strwun.c |  |-  C = ( Base ` S ) | 
						
							| 3 |  | setc1strwun.u |  |-  ( ph -> U e. WUni ) | 
						
							| 4 |  | setc1strwun.o |  |-  ( ph -> _om e. U ) | 
						
							| 5 | 1 3 | setcbas |  |-  ( ph -> U = ( Base ` S ) ) | 
						
							| 6 | 2 5 | eqtr4id |  |-  ( ph -> C = U ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ph -> ( X e. C <-> X e. U ) ) | 
						
							| 8 | 7 | biimpa |  |-  ( ( ph /\ X e. C ) -> X e. U ) | 
						
							| 9 |  | eqid |  |-  { <. ( Base ` ndx ) , X >. } = { <. ( Base ` ndx ) , X >. } | 
						
							| 10 | 9 3 4 | 1strwun |  |-  ( ( ph /\ X e. U ) -> { <. ( Base ` ndx ) , X >. } e. U ) | 
						
							| 11 | 8 10 | syldan |  |-  ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) |