Metamath Proof Explorer


Theorem funcsetcestrclem1

Description: Lemma 1 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s
|- S = ( SetCat ` U )
funcsetcestrc.c
|- C = ( Base ` S )
funcsetcestrc.f
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
Assertion funcsetcestrclem1
|- ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s
 |-  S = ( SetCat ` U )
2 funcsetcestrc.c
 |-  C = ( Base ` S )
3 funcsetcestrc.f
 |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
4 3 adantr
 |-  ( ( ph /\ X e. C ) -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
5 opeq2
 |-  ( x = X -> <. ( Base ` ndx ) , x >. = <. ( Base ` ndx ) , X >. )
6 5 sneqd
 |-  ( x = X -> { <. ( Base ` ndx ) , x >. } = { <. ( Base ` ndx ) , X >. } )
7 6 adantl
 |-  ( ( ( ph /\ X e. C ) /\ x = X ) -> { <. ( Base ` ndx ) , x >. } = { <. ( Base ` ndx ) , X >. } )
8 simpr
 |-  ( ( ph /\ X e. C ) -> X e. C )
9 snex
 |-  { <. ( Base ` ndx ) , X >. } e. _V
10 9 a1i
 |-  ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. _V )
11 4 7 8 10 fvmptd
 |-  ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } )