Metamath Proof Explorer


Theorem funcsetcestrclem2

Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s
|- S = ( SetCat ` U )
funcsetcestrc.c
|- C = ( Base ` S )
funcsetcestrc.f
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
funcsetcestrc.u
|- ( ph -> U e. WUni )
funcsetcestrc.o
|- ( ph -> _om e. U )
Assertion funcsetcestrclem2
|- ( ( ph /\ X e. C ) -> ( F ` X ) e. U )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s
 |-  S = ( SetCat ` U )
2 funcsetcestrc.c
 |-  C = ( Base ` S )
3 funcsetcestrc.f
 |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
4 funcsetcestrc.u
 |-  ( ph -> U e. WUni )
5 funcsetcestrc.o
 |-  ( ph -> _om e. U )
6 1 2 3 funcsetcestrclem1
 |-  ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } )
7 1 2 4 5 setc1strwun
 |-  ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U )
8 6 7 eqeltrd
 |-  ( ( ph /\ X e. C ) -> ( F ` X ) e. U )