Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
funcsetcestrc.c | |- C = ( Base ` S ) |
||
funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
Assertion | funcsetcestrclem2 | |- ( ( ph /\ X e. C ) -> ( F ` X ) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
6 | 1 2 3 | funcsetcestrclem1 | |- ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } ) |
7 | 1 2 4 5 | setc1strwun | |- ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) |
8 | 6 7 | eqeltrd | |- ( ( ph /\ X e. C ) -> ( F ` X ) e. U ) |