Metamath Proof Explorer


Theorem funcsetcestrclem3

Description: Lemma 3 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s
|- S = ( SetCat ` U )
funcsetcestrc.c
|- C = ( Base ` S )
funcsetcestrc.f
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
funcsetcestrc.u
|- ( ph -> U e. WUni )
funcsetcestrc.o
|- ( ph -> _om e. U )
funcsetcestrclem3.e
|- E = ( ExtStrCat ` U )
funcsetcestrclem3.b
|- B = ( Base ` E )
Assertion funcsetcestrclem3
|- ( ph -> F : C --> B )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s
 |-  S = ( SetCat ` U )
2 funcsetcestrc.c
 |-  C = ( Base ` S )
3 funcsetcestrc.f
 |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) )
4 funcsetcestrc.u
 |-  ( ph -> U e. WUni )
5 funcsetcestrc.o
 |-  ( ph -> _om e. U )
6 funcsetcestrclem3.e
 |-  E = ( ExtStrCat ` U )
7 funcsetcestrclem3.b
 |-  B = ( Base ` E )
8 1 2 4 5 setc1strwun
 |-  ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. U )
9 6 4 estrcbas
 |-  ( ph -> U = ( Base ` E ) )
10 9 eqcomd
 |-  ( ph -> ( Base ` E ) = U )
11 10 adantr
 |-  ( ( ph /\ x e. C ) -> ( Base ` E ) = U )
12 8 11 eleqtrrd
 |-  ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. ( Base ` E ) )
13 12 7 eleqtrrdi
 |-  ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. B )
14 3 13 fmpt3d
 |-  ( ph -> F : C --> B )