Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
|- S = ( SetCat ` U ) |
2 |
|
funcsetcestrc.c |
|- C = ( Base ` S ) |
3 |
|
funcsetcestrc.f |
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
4 |
|
funcsetcestrc.u |
|- ( ph -> U e. WUni ) |
5 |
|
funcsetcestrc.o |
|- ( ph -> _om e. U ) |
6 |
|
funcsetcestrclem3.e |
|- E = ( ExtStrCat ` U ) |
7 |
|
funcsetcestrclem3.b |
|- B = ( Base ` E ) |
8 |
1 2 4 5
|
setc1strwun |
|- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. U ) |
9 |
6 4
|
estrcbas |
|- ( ph -> U = ( Base ` E ) ) |
10 |
9
|
eqcomd |
|- ( ph -> ( Base ` E ) = U ) |
11 |
10
|
adantr |
|- ( ( ph /\ x e. C ) -> ( Base ` E ) = U ) |
12 |
8 11
|
eleqtrrd |
|- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. ( Base ` E ) ) |
13 |
12 7
|
eleqtrrdi |
|- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. B ) |
14 |
3 13
|
fmpt3d |
|- ( ph -> F : C --> B ) |