| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetcestrc.s |
|- S = ( SetCat ` U ) |
| 2 |
|
funcsetcestrc.c |
|- C = ( Base ` S ) |
| 3 |
|
funcsetcestrc.f |
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
| 4 |
|
funcsetcestrc.u |
|- ( ph -> U e. WUni ) |
| 5 |
|
funcsetcestrc.o |
|- ( ph -> _om e. U ) |
| 6 |
|
funcsetcestrclem3.e |
|- E = ( ExtStrCat ` U ) |
| 7 |
|
funcsetcestrclem3.b |
|- B = ( Base ` E ) |
| 8 |
1 2 3 4 5 6 7
|
funcsetcestrclem3 |
|- ( ph -> F : C --> B ) |
| 9 |
1 2 3
|
funcsetcestrclem1 |
|- ( ( ph /\ y e. C ) -> ( F ` y ) = { <. ( Base ` ndx ) , y >. } ) |
| 10 |
9
|
adantrr |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( F ` y ) = { <. ( Base ` ndx ) , y >. } ) |
| 11 |
1 2 3
|
funcsetcestrclem1 |
|- ( ( ph /\ z e. C ) -> ( F ` z ) = { <. ( Base ` ndx ) , z >. } ) |
| 12 |
11
|
adantrl |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( F ` z ) = { <. ( Base ` ndx ) , z >. } ) |
| 13 |
10 12
|
eqeq12d |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( ( F ` y ) = ( F ` z ) <-> { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } ) ) |
| 14 |
|
opex |
|- <. ( Base ` ndx ) , y >. e. _V |
| 15 |
|
sneqbg |
|- ( <. ( Base ` ndx ) , y >. e. _V -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } <-> <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. ) ) |
| 16 |
14 15
|
mp1i |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } <-> <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. ) ) |
| 17 |
|
fvexd |
|- ( ph -> ( Base ` ndx ) e. _V ) |
| 18 |
|
simpl |
|- ( ( y e. C /\ z e. C ) -> y e. C ) |
| 19 |
|
opthg |
|- ( ( ( Base ` ndx ) e. _V /\ y e. C ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. <-> ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) ) ) |
| 20 |
17 18 19
|
syl2an |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. <-> ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) ) ) |
| 21 |
|
simpr |
|- ( ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) -> y = z ) |
| 22 |
20 21
|
biimtrdi |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. -> y = z ) ) |
| 23 |
16 22
|
sylbid |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } -> y = z ) ) |
| 24 |
13 23
|
sylbid |
|- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 25 |
24
|
ralrimivva |
|- ( ph -> A. y e. C A. z e. C ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 26 |
|
dff13 |
|- ( F : C -1-1-> B <-> ( F : C --> B /\ A. y e. C A. z e. C ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
| 27 |
8 25 26
|
sylanbrc |
|- ( ph -> F : C -1-1-> B ) |