Metamath Proof Explorer


Theorem embedsetcestrclem

Description: Lemma for embedsetcestrc . (Contributed by AV, 31-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
funcsetcestrclem3.e E = ExtStrCat U
funcsetcestrclem3.b B = Base E
Assertion embedsetcestrclem φ F : C 1-1 B

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 funcsetcestrclem3.e E = ExtStrCat U
7 funcsetcestrclem3.b B = Base E
8 1 2 3 4 5 6 7 funcsetcestrclem3 φ F : C B
9 1 2 3 funcsetcestrclem1 φ y C F y = Base ndx y
10 9 adantrr φ y C z C F y = Base ndx y
11 1 2 3 funcsetcestrclem1 φ z C F z = Base ndx z
12 11 adantrl φ y C z C F z = Base ndx z
13 10 12 eqeq12d φ y C z C F y = F z Base ndx y = Base ndx z
14 opex Base ndx y V
15 sneqbg Base ndx y V Base ndx y = Base ndx z Base ndx y = Base ndx z
16 14 15 mp1i φ y C z C Base ndx y = Base ndx z Base ndx y = Base ndx z
17 fvexd φ Base ndx V
18 simpl y C z C y C
19 opthg Base ndx V y C Base ndx y = Base ndx z Base ndx = Base ndx y = z
20 17 18 19 syl2an φ y C z C Base ndx y = Base ndx z Base ndx = Base ndx y = z
21 simpr Base ndx = Base ndx y = z y = z
22 20 21 syl6bi φ y C z C Base ndx y = Base ndx z y = z
23 16 22 sylbid φ y C z C Base ndx y = Base ndx z y = z
24 13 23 sylbid φ y C z C F y = F z y = z
25 24 ralrimivva φ y C z C F y = F z y = z
26 dff13 F : C 1-1 B F : C B y C z C F y = F z y = z
27 8 25 26 sylanbrc φ F : C 1-1 B