Metamath Proof Explorer


Theorem funcsetcestrclem4

Description: Lemma 4 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
funcsetcestrc.g φ G = x C , y C I y x
Assertion funcsetcestrclem4 φ G Fn C × C

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 funcsetcestrc.g φ G = x C , y C I y x
7 eqid x C , y C I y x = x C , y C I y x
8 ovex y x V
9 resiexg y x V I y x V
10 8 9 ax-mp I y x V
11 7 10 fnmpoi x C , y C I y x Fn C × C
12 6 fneq1d φ G Fn C × C x C , y C I y x Fn C × C
13 11 12 mpbiri φ G Fn C × C