Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
funcsetcestrclem4
Next ⟩
funcsetcestrclem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcsetcestrclem4
Description:
Lemma 4 for
funcsetcestrc
.
(Contributed by
AV
, 27-Mar-2020)
Ref
Expression
Hypotheses
funcsetcestrc.s
⊢
S
=
SetCat
⁡
U
funcsetcestrc.c
⊢
C
=
Base
S
funcsetcestrc.f
⊢
φ
→
F
=
x
∈
C
⟼
Base
ndx
x
funcsetcestrc.u
⊢
φ
→
U
∈
WUni
funcsetcestrc.o
⊢
φ
→
ω
∈
U
funcsetcestrc.g
⊢
φ
→
G
=
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
Assertion
funcsetcestrclem4
⊢
φ
→
G
Fn
C
×
C
Proof
Step
Hyp
Ref
Expression
1
funcsetcestrc.s
⊢
S
=
SetCat
⁡
U
2
funcsetcestrc.c
⊢
C
=
Base
S
3
funcsetcestrc.f
⊢
φ
→
F
=
x
∈
C
⟼
Base
ndx
x
4
funcsetcestrc.u
⊢
φ
→
U
∈
WUni
5
funcsetcestrc.o
⊢
φ
→
ω
∈
U
6
funcsetcestrc.g
⊢
φ
→
G
=
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
7
eqid
⊢
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
=
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
8
ovex
⊢
y
x
∈
V
9
resiexg
⊢
y
x
∈
V
→
I
↾
y
x
∈
V
10
8
9
ax-mp
⊢
I
↾
y
x
∈
V
11
7
10
fnmpoi
⊢
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
Fn
C
×
C
12
6
fneq1d
⊢
φ
→
G
Fn
C
×
C
↔
x
∈
C
,
y
∈
C
⟼
I
↾
y
x
Fn
C
×
C
13
11
12
mpbiri
⊢
φ
→
G
Fn
C
×
C