Metamath Proof Explorer


Theorem funcsetcestrclem5

Description: Lemma 5 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
Assertion funcsetcestrclem5 φXCYCXGY=IYX

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 6 adantr φXCYCG=xC,yCIyx
8 oveq12 y=Yx=Xyx=YX
9 8 ancoms x=Xy=Yyx=YX
10 9 reseq2d x=Xy=YIyx=IYX
11 10 adantl φXCYCx=Xy=YIyx=IYX
12 simprl φXCYCXC
13 simprr φXCYCYC
14 ovexd φXCYCYXV
15 14 resiexd φXCYCIYXV
16 7 11 12 13 15 ovmpod φXCYCXGY=IYX