Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( 𝑦 ↑m 𝑥 ) = ( 𝑌 ↑m 𝑋 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑦 ↑m 𝑥 ) = ( 𝑌 ↑m 𝑋 ) ) |
10 |
9
|
reseq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) |
14 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ↑m 𝑋 ) ∈ V ) |
15 |
14
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ∈ V ) |
16 |
7 11 12 13 15
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |