Metamath Proof Explorer


Theorem funcsetcestrclem5

Description: Lemma 5 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
Assertion funcsetcestrclem5 ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌m 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
7 6 adantr ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
8 oveq12 ( ( 𝑦 = 𝑌𝑥 = 𝑋 ) → ( 𝑦m 𝑥 ) = ( 𝑌m 𝑋 ) )
9 8 ancoms ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑦m 𝑥 ) = ( 𝑌m 𝑋 ) )
10 9 reseq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( I ↾ ( 𝑦m 𝑥 ) ) = ( I ↾ ( 𝑌m 𝑋 ) ) )
11 10 adantl ( ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑦m 𝑥 ) ) = ( I ↾ ( 𝑌m 𝑋 ) ) )
12 simprl ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑋𝐶 )
13 simprr ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑌𝐶 )
14 ovexd ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑌m 𝑋 ) ∈ V )
15 14 resiexd ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( I ↾ ( 𝑌m 𝑋 ) ) ∈ V )
16 7 11 12 13 15 ovmpod ( ( 𝜑 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌m 𝑋 ) ) )