Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
1 2 3 4 5 6
|
funcsetcestrclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) ) |
10 |
|
fvresi |
⊢ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) → ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) = 𝐻 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) = 𝐻 ) |
12 |
9 11
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |