Metamath Proof Explorer


Theorem funcsetcestrc

Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
funcsetcestrc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
Assertion funcsetcestrc ( 𝜑𝐹 ( 𝑆 Func 𝐸 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
7 funcsetcestrc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
8 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
9 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
10 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
11 eqid ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 )
12 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
13 eqid ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 )
14 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
15 1 setccat ( 𝑈 ∈ WUni → 𝑆 ∈ Cat )
16 4 15 syl ( 𝜑𝑆 ∈ Cat )
17 7 estrccat ( 𝑈 ∈ WUni → 𝐸 ∈ Cat )
18 4 17 syl ( 𝜑𝐸 ∈ Cat )
19 1 2 3 4 5 7 8 funcsetcestrclem3 ( 𝜑𝐹 : 𝐶 ⟶ ( Base ‘ 𝐸 ) )
20 1 2 3 4 5 6 funcsetcestrclem4 ( 𝜑𝐺 Fn ( 𝐶 × 𝐶 ) )
21 1 2 3 4 5 6 7 funcsetcestrclem8 ( ( 𝜑 ∧ ( 𝑎𝐶𝑏𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑏 ) ) )
22 1 2 3 4 5 6 7 funcsetcestrclem7 ( ( 𝜑𝑎𝐶 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑎 ) ) )
23 1 2 3 4 5 6 7 funcsetcestrclem9 ( ( 𝜑 ∧ ( 𝑎𝐶𝑏𝐶𝑐𝐶 ) ∧ ( ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑏 ( Hom ‘ 𝑆 ) 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑘 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝑆 ) 𝑐 ) ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑘 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ ) ) )
24 2 8 9 10 11 12 13 14 16 18 19 20 21 22 23 isfuncd ( 𝜑𝐹 ( 𝑆 Func 𝐸 ) 𝐺 )