Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
|
funcsetcestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
8 |
1 2 3 4 5 6 7
|
funcsetcestrc |
⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ) |
9 |
1 2 3 4 5 6 7
|
funcsetcestrclem8 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
12 |
1 4
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
13 |
2 12
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐶 ↔ 𝑎 ∈ 𝑈 ) ) |
15 |
14
|
biimpcd |
⊢ ( 𝑎 ∈ 𝐶 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝑈 ) |
18 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈 ) ) |
19 |
18
|
biimpcd |
⊢ ( 𝑏 ∈ 𝐶 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
21 |
20
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝑈 ) |
22 |
1 10 11 17 21
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) = ( 𝑏 ↑m 𝑎 ) ) |
23 |
22
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ↔ ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) ) |
24 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
25 |
24
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
26 |
23 25
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
27 |
26
|
com12 |
⊢ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
28 |
27
|
adantr |
⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
29 |
28
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
30 |
22
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ↔ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) ) |
31 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
32 |
31
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
33 |
30 32
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
34 |
33
|
com12 |
⊢ ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
35 |
34
|
adantl |
⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
36 |
35
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
37 |
29 36
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
38 |
37
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
39 |
38
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
40 |
|
dff13 |
⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) ) |
41 |
9 39 40
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
42 |
41
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
43 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
44 |
2 11 43
|
isfth2 |
⊢ ( 𝐹 ( 𝑆 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
45 |
8 42 44
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝑆 Faith 𝐸 ) 𝐺 ) |