Metamath Proof Explorer


Theorem fthsetcestrc

Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
funcsetcestrc.e E=ExtStrCatU
Assertion fthsetcestrc φFSFaithEG

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 funcsetcestrc.e E=ExtStrCatU
8 1 2 3 4 5 6 7 funcsetcestrc φFSFuncEG
9 1 2 3 4 5 6 7 funcsetcestrclem8 φaCbCaGb:aHomSbFaHomEFb
10 4 adantr φaCbCUWUni
11 eqid HomS=HomS
12 1 4 setcbas φU=BaseS
13 2 12 eqtr4id φC=U
14 13 eleq2d φaCaU
15 14 biimpcd aCφaU
16 15 adantr aCbCφaU
17 16 impcom φaCbCaU
18 13 eleq2d φbCbU
19 18 biimpcd bCφbU
20 19 adantl aCbCφbU
21 20 impcom φaCbCbU
22 1 10 11 17 21 setchom φaCbCaHomSb=ba
23 22 eleq2d φaCbChaHomSbhba
24 1 2 3 4 5 6 funcsetcestrclem6 φaCbChbaaGbh=h
25 24 3expia φaCbChbaaGbh=h
26 23 25 sylbid φaCbChaHomSbaGbh=h
27 26 com12 haHomSbφaCbCaGbh=h
28 27 adantr haHomSbkaHomSbφaCbCaGbh=h
29 28 impcom φaCbChaHomSbkaHomSbaGbh=h
30 22 eleq2d φaCbCkaHomSbkba
31 1 2 3 4 5 6 funcsetcestrclem6 φaCbCkbaaGbk=k
32 31 3expia φaCbCkbaaGbk=k
33 30 32 sylbid φaCbCkaHomSbaGbk=k
34 33 com12 kaHomSbφaCbCaGbk=k
35 34 adantl haHomSbkaHomSbφaCbCaGbk=k
36 35 impcom φaCbChaHomSbkaHomSbaGbk=k
37 29 36 eqeq12d φaCbChaHomSbkaHomSbaGbh=aGbkh=k
38 37 biimpd φaCbChaHomSbkaHomSbaGbh=aGbkh=k
39 38 ralrimivva φaCbChaHomSbkaHomSbaGbh=aGbkh=k
40 dff13 aGb:aHomSb1-1FaHomEFbaGb:aHomSbFaHomEFbhaHomSbkaHomSbaGbh=aGbkh=k
41 9 39 40 sylanbrc φaCbCaGb:aHomSb1-1FaHomEFb
42 41 ralrimivva φaCbCaGb:aHomSb1-1FaHomEFb
43 eqid HomE=HomE
44 2 11 43 isfth2 FSFaithEGFSFuncEGaCbCaGb:aHomSb1-1FaHomEFb
45 8 42 44 sylanbrc φFSFaithEG