Metamath Proof Explorer


Theorem funcsetcestrc

Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
funcsetcestrc.g φ G = x C , y C I y x
funcsetcestrc.e E = ExtStrCat U
Assertion funcsetcestrc φ F S Func E G

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 funcsetcestrc.g φ G = x C , y C I y x
7 funcsetcestrc.e E = ExtStrCat U
8 eqid Base E = Base E
9 eqid Hom S = Hom S
10 eqid Hom E = Hom E
11 eqid Id S = Id S
12 eqid Id E = Id E
13 eqid comp S = comp S
14 eqid comp E = comp E
15 1 setccat U WUni S Cat
16 4 15 syl φ S Cat
17 7 estrccat U WUni E Cat
18 4 17 syl φ E Cat
19 1 2 3 4 5 7 8 funcsetcestrclem3 φ F : C Base E
20 1 2 3 4 5 6 funcsetcestrclem4 φ G Fn C × C
21 1 2 3 4 5 6 7 funcsetcestrclem8 φ a C b C a G b : a Hom S b F a Hom E F b
22 1 2 3 4 5 6 7 funcsetcestrclem7 φ a C a G a Id S a = Id E F a
23 1 2 3 4 5 6 7 funcsetcestrclem9 φ a C b C c C h a Hom S b k b Hom S c a G c k a b comp S c h = b G c k F a F b comp E F c a G b h
24 2 8 9 10 11 12 13 14 16 18 19 20 21 22 23 isfuncd φ F S Func E G