Metamath Proof Explorer


Theorem funcsetcestrclem3

Description: Lemma 3 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
funcsetcestrclem3.e E = ExtStrCat U
funcsetcestrclem3.b B = Base E
Assertion funcsetcestrclem3 φ F : C B

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 funcsetcestrclem3.e E = ExtStrCat U
7 funcsetcestrclem3.b B = Base E
8 1 2 4 5 setc1strwun φ x C Base ndx x U
9 6 4 estrcbas φ U = Base E
10 9 eqcomd φ Base E = U
11 10 adantr φ x C Base E = U
12 8 11 eleqtrrd φ x C Base ndx x Base E
13 12 7 eleqtrrdi φ x C Base ndx x B
14 3 13 fmpt3d φ F : C B