Metamath Proof Explorer


Theorem funcsetcestrclem3

Description: Lemma 3 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
funcsetcestrclem3.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcsetcestrclem3.b 𝐵 = ( Base ‘ 𝐸 )
Assertion funcsetcestrclem3 ( 𝜑𝐹 : 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 funcsetcestrclem3.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
7 funcsetcestrclem3.b 𝐵 = ( Base ‘ 𝐸 )
8 1 2 4 5 setc1strwun ( ( 𝜑𝑥𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ∈ 𝑈 )
9 6 4 estrcbas ( 𝜑𝑈 = ( Base ‘ 𝐸 ) )
10 9 eqcomd ( 𝜑 → ( Base ‘ 𝐸 ) = 𝑈 )
11 10 adantr ( ( 𝜑𝑥𝐶 ) → ( Base ‘ 𝐸 ) = 𝑈 )
12 8 11 eleqtrrd ( ( 𝜑𝑥𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ∈ ( Base ‘ 𝐸 ) )
13 12 7 eleqtrrdi ( ( 𝜑𝑥𝐶 ) → { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ∈ 𝐵 )
14 3 13 fmpt3d ( 𝜑𝐹 : 𝐶𝐵 )