| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
| 4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 6 |
|
funcsetcestrclem3.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
| 7 |
|
funcsetcestrclem3.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 8 |
1 2 4 5
|
setc1strwun |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ 𝑈 ) |
| 9 |
6 4
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = 𝑈 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( Base ‘ 𝐸 ) = 𝑈 ) |
| 12 |
8 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ ( Base ‘ 𝐸 ) ) |
| 13 |
12 7
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ 𝐵 ) |
| 14 |
3 13
|
fmpt3d |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |