Metamath Proof Explorer


Theorem embedsetcestrclem

Description: Lemma for embedsetcestrc . (Contributed by AV, 31-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
funcsetcestrclem3.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcsetcestrclem3.b 𝐵 = ( Base ‘ 𝐸 )
Assertion embedsetcestrclem ( 𝜑𝐹 : 𝐶1-1𝐵 )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 funcsetcestrclem3.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
7 funcsetcestrclem3.b 𝐵 = ( Base ‘ 𝐸 )
8 1 2 3 4 5 6 7 funcsetcestrclem3 ( 𝜑𝐹 : 𝐶𝐵 )
9 1 2 3 funcsetcestrclem1 ( ( 𝜑𝑦𝐶 ) → ( 𝐹𝑦 ) = { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } )
10 9 adantrr ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( 𝐹𝑦 ) = { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } )
11 1 2 3 funcsetcestrclem1 ( ( 𝜑𝑧𝐶 ) → ( 𝐹𝑧 ) = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } )
12 11 adantrl ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( 𝐹𝑧 ) = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } )
13 10 12 eqeq12d ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ↔ { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } ) )
14 opex ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ ∈ V
15 sneqbg ( ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ ∈ V → ( { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } ↔ ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ ) )
16 14 15 mp1i ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } ↔ ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ ) )
17 fvexd ( 𝜑 → ( Base ‘ ndx ) ∈ V )
18 simpl ( ( 𝑦𝐶𝑧𝐶 ) → 𝑦𝐶 )
19 opthg ( ( ( Base ‘ ndx ) ∈ V ∧ 𝑦𝐶 ) → ( ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) )
20 17 18 19 syl2an ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) )
21 simpr ( ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
22 20 21 syl6bi ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ = ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ → 𝑦 = 𝑧 ) )
23 16 22 sylbid ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( { ⟨ ( Base ‘ ndx ) , 𝑦 ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝑧 ⟩ } → 𝑦 = 𝑧 ) )
24 13 23 sylbid ( ( 𝜑 ∧ ( 𝑦𝐶𝑧𝐶 ) ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) )
25 24 ralrimivva ( 𝜑 → ∀ 𝑦𝐶𝑧𝐶 ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) )
26 dff13 ( 𝐹 : 𝐶1-1𝐵 ↔ ( 𝐹 : 𝐶𝐵 ∧ ∀ 𝑦𝐶𝑧𝐶 ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) ) )
27 8 25 26 sylanbrc ( 𝜑𝐹 : 𝐶1-1𝐵 )