Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrclem3.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
7 |
|
funcsetcestrclem3.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
8 |
1 2 3 4 5 6 7
|
funcsetcestrclem3 |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
9 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = { 〈 ( Base ‘ ndx ) , 𝑦 〉 } ) |
10 |
9
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑦 ) = { 〈 ( Base ‘ ndx ) , 𝑦 〉 } ) |
11 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) |
12 |
11
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑧 ) = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) |
13 |
10 12
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) ) |
14 |
|
opex |
⊢ 〈 ( Base ‘ ndx ) , 𝑦 〉 ∈ V |
15 |
|
sneqbg |
⊢ ( 〈 ( Base ‘ ndx ) , 𝑦 〉 ∈ V → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ↔ 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ) ) |
16 |
14 15
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ↔ 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ) ) |
17 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ V ) |
18 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
19 |
|
opthg |
⊢ ( ( ( Base ‘ ndx ) ∈ V ∧ 𝑦 ∈ 𝐶 ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) ) |
21 |
|
simpr |
⊢ ( ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
22 |
20 21
|
syl6bi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 → 𝑦 = 𝑧 ) ) |
23 |
16 22
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } → 𝑦 = 𝑧 ) ) |
24 |
13 23
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
25 |
24
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
26 |
|
dff13 |
⊢ ( 𝐹 : 𝐶 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
27 |
8 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐵 ) |