Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) |
8 |
|
ovex |
⊢ ( 𝑦 ↑m 𝑥 ) ∈ V |
9 |
|
resiexg |
⊢ ( ( 𝑦 ↑m 𝑥 ) ∈ V → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ∈ V ) |
10 |
8 9
|
ax-mp |
⊢ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ∈ V |
11 |
7 10
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 ) |
12 |
6
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn ( 𝐶 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 ) ) ) |
13 |
11 12
|
mpbiri |
⊢ ( 𝜑 → 𝐺 Fn ( 𝐶 × 𝐶 ) ) |