Metamath Proof Explorer


Theorem funcsetcestrclem4

Description: Lemma 4 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
Assertion funcsetcestrclem4 ( 𝜑𝐺 Fn ( 𝐶 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s 𝑆 = ( SetCat ‘ 𝑈 )
2 funcsetcestrc.c 𝐶 = ( Base ‘ 𝑆 )
3 funcsetcestrc.f ( 𝜑𝐹 = ( 𝑥𝐶 ↦ { ⟨ ( Base ‘ ndx ) , 𝑥 ⟩ } ) )
4 funcsetcestrc.u ( 𝜑𝑈 ∈ WUni )
5 funcsetcestrc.o ( 𝜑 → ω ∈ 𝑈 )
6 funcsetcestrc.g ( 𝜑𝐺 = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) )
7 eqid ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) = ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) )
8 ovex ( 𝑦m 𝑥 ) ∈ V
9 resiexg ( ( 𝑦m 𝑥 ) ∈ V → ( I ↾ ( 𝑦m 𝑥 ) ) ∈ V )
10 8 9 ax-mp ( I ↾ ( 𝑦m 𝑥 ) ) ∈ V
11 7 10 fnmpoi ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 )
12 6 fneq1d ( 𝜑 → ( 𝐺 Fn ( 𝐶 × 𝐶 ) ↔ ( 𝑥𝐶 , 𝑦𝐶 ↦ ( I ↾ ( 𝑦m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 ) ) )
13 11 12 mpbiri ( 𝜑𝐺 Fn ( 𝐶 × 𝐶 ) )