Metamath Proof Explorer


Theorem funcsetcestrclem7

Description: Lemma 7 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
funcsetcestrc.g φ G = x C , y C I y x
funcsetcestrc.e E = ExtStrCat U
Assertion funcsetcestrclem7 φ X C X G X Id S X = Id E F X

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 funcsetcestrc.g φ G = x C , y C I y x
7 funcsetcestrc.e E = ExtStrCat U
8 1 2 3 4 5 6 funcsetcestrclem5 φ X C X C X G X = I X X
9 8 anabsan2 φ X C X G X = I X X
10 eqid Id S = Id S
11 4 adantr φ X C U WUni
12 1 4 setcbas φ U = Base S
13 2 12 eqtr4id φ C = U
14 13 eleq2d φ X C X U
15 14 biimpa φ X C X U
16 1 10 11 15 setcid φ X C Id S X = I X
17 9 16 fveq12d φ X C X G X Id S X = I X X I X
18 f1oi I X : X 1-1 onto X
19 f1of I X : X 1-1 onto X I X : X X
20 18 19 ax-mp I X : X X
21 simpr φ X C X C
22 21 21 elmapd φ X C I X X X I X : X X
23 20 22 mpbiri φ X C I X X X
24 fvresi I X X X I X X I X = I X
25 23 24 syl φ X C I X X I X = I X
26 eqid Base ndx X = Base ndx X
27 26 1strbas X C X = Base Base ndx X
28 21 27 syl φ X C X = Base Base ndx X
29 28 reseq2d φ X C I X = I Base Base ndx X
30 25 29 eqtrd φ X C I X X I X = I Base Base ndx X
31 1 2 3 funcsetcestrclem1 φ X C F X = Base ndx X
32 31 fveq2d φ X C Id E F X = Id E Base ndx X
33 eqid Id E = Id E
34 1 2 4 5 setc1strwun φ X C Base ndx X U
35 7 33 11 34 estrcid φ X C Id E Base ndx X = I Base Base ndx X
36 32 35 eqtr2d φ X C I Base Base ndx X = Id E F X
37 17 30 36 3eqtrd φ X C X G X Id S X = Id E F X