Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
|
funcsetcestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
8 |
1 2 3 4 5 6
|
funcsetcestrclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ) |
9 |
8
|
anabsan2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑈 ∈ WUni ) |
12 |
1 4
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
13 |
2 12
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
15 |
14
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) |
16 |
1 10 11 15
|
setcid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
17 |
9 16
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) ) = ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) ) |
18 |
|
f1oi |
⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 |
19 |
|
f1of |
⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) |
20 |
18 19
|
ax-mp |
⊢ ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
22 |
21 21
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) ↔ ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) ) |
23 |
20 22
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) ) |
24 |
|
fvresi |
⊢ ( ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ 𝑋 ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ 𝑋 ) ) |
26 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } |
27 |
26
|
1strbas |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
28 |
21 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
29 |
28
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ 𝑋 ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
30 |
25 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
31 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
33 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
34 |
1 2 4 5
|
setc1strwun |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
35 |
7 33 11 34
|
estrcid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝐸 ) ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
36 |
32 35
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
37 |
17 30 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |