Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
7 |
|
funcsetcestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
8 |
|
f1oi |
⊢ ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) –1-1-onto→ ( 𝑌 ↑m 𝑋 ) |
9 |
|
f1of |
⊢ ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) –1-1-onto→ ( 𝑌 ↑m 𝑋 ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( 𝑌 ↑m 𝑋 ) ) |
10 |
8 9
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( 𝑌 ↑m 𝑋 ) ) |
11 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) |
13 |
12
|
ancomd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) ) |
14 |
|
elmapg |
⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
16 |
15
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ) |
17 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
19 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } |
20 |
19
|
1strbas |
⊢ ( 𝑌 ∈ 𝐶 → 𝑌 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝑌 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
25 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
27 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } |
28 |
27
|
1strbas |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
30 |
26 29
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
31 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
32 |
24 31
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( 𝑌 ↑m 𝑋 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( 𝑌 ↑m 𝑋 ) ) |
34 |
16 33
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
35 |
34
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 : 𝑋 ⟶ 𝑌 → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
36 |
11 35
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
37 |
36
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ↑m 𝑋 ) ⊆ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
38 |
10 37
|
fssd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
39 |
1 2 3 4 5 6
|
funcsetcestrclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
40 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
41 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
42 |
1 4
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
43 |
2 42
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
44 |
43
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
45 |
44
|
biimpd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → 𝑋 ∈ 𝑈 ) ) |
46 |
45
|
adantrd |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) ) |
47 |
46
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝑈 ) |
48 |
43
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 ↔ 𝑌 ∈ 𝑈 ) ) |
49 |
48
|
biimpd |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → 𝑌 ∈ 𝑈 ) ) |
50 |
49
|
adantld |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ 𝑈 ) ) |
51 |
50
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝑈 ) |
52 |
1 40 41 47 51
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
53 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
54 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
55 |
54
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
56 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
57 |
56
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
58 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) |
59 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) |
60 |
7 40 53 55 57 58 59
|
estrchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) = ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
61 |
39 52 60
|
feq123d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
62 |
38 61
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |