| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
| 4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
| 7 |
|
funcsetcestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
| 10 |
1 4
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 11 |
2 10
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 13 |
12
|
biimpcd |
⊢ ( 𝑋 ∈ 𝐶 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 15 |
14
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑋 ∈ 𝑈 ) |
| 16 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 ↔ 𝑌 ∈ 𝑈 ) ) |
| 17 |
16
|
biimpcd |
⊢ ( 𝑌 ∈ 𝐶 → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 19 |
18
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑌 ∈ 𝑈 ) |
| 20 |
1 8 9 15 19
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 21 |
20
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ↔ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) ) |
| 22 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑍 ∈ 𝐶 ↔ 𝑍 ∈ 𝑈 ) ) |
| 23 |
22
|
biimpcd |
⊢ ( 𝑍 ∈ 𝐶 → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 24 |
23
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 25 |
24
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑍 ∈ 𝑈 ) |
| 26 |
1 8 9 19 25
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) = ( 𝑍 ↑m 𝑌 ) ) |
| 27 |
26
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ↔ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) |
| 28 |
21 27
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) ↔ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) ) |
| 29 |
|
elmapi |
⊢ ( 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) → 𝐾 : 𝑌 ⟶ 𝑍 ) |
| 30 |
|
elmapi |
⊢ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) → 𝐻 : 𝑋 ⟶ 𝑌 ) |
| 31 |
|
fco |
⊢ ( ( 𝐾 : 𝑌 ⟶ 𝑍 ∧ 𝐻 : 𝑋 ⟶ 𝑌 ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) |
| 32 |
29 30 31
|
syl2anr |
⊢ ( ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) |
| 34 |
|
elmapg |
⊢ ( ( 𝑍 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 35 |
34
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 36 |
35
|
3adant2 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 37 |
36
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 38 |
33 37
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ) |
| 39 |
|
fvresi |
⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) → ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 41 |
1 2 3 4 5 6
|
funcsetcestrclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 42 |
41
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 44 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑈 ∈ WUni ) |
| 45 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
| 46 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑋 ∈ 𝑈 ) |
| 47 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑌 ∈ 𝑈 ) |
| 48 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑍 ∈ 𝑈 ) |
| 49 |
30
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐻 : 𝑋 ⟶ 𝑌 ) |
| 50 |
29
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐾 : 𝑌 ⟶ 𝑍 ) |
| 51 |
1 44 45 46 47 48 49 50
|
setcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) = ( 𝐾 ∘ 𝐻 ) ) |
| 52 |
43 51
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 53 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 54 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 55 |
54
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 57 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 58 |
57
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 60 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 61 |
60
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 63 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) |
| 64 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) |
| 65 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) |
| 66 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝜑 ) |
| 67 |
|
3simpa |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) |
| 68 |
67
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) |
| 69 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) |
| 70 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 71 |
66 68 69 70
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 72 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 73 |
72
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 74 |
73
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 75 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } |
| 76 |
75
|
1strbas |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 77 |
76
|
eqcomd |
⊢ ( 𝑋 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 78 |
77
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 80 |
74 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 82 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
| 83 |
82
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
| 84 |
83
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 85 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } |
| 86 |
85
|
1strbas |
⊢ ( 𝑌 ∈ 𝐶 → 𝑌 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 87 |
86
|
eqcomd |
⊢ ( 𝑌 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 88 |
87
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 90 |
84 89
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 92 |
71 81 91
|
feq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↔ 𝐻 : 𝑋 ⟶ 𝑌 ) ) |
| 93 |
49 92
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ) |
| 94 |
|
3simpc |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) |
| 95 |
94
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) |
| 96 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) |
| 97 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 98 |
66 95 96 97
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 99 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑍 ) = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) |
| 100 |
99
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑍 ) = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) |
| 101 |
100
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) ) |
| 102 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } |
| 103 |
102
|
1strbas |
⊢ ( 𝑍 ∈ 𝐶 → 𝑍 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) ) |
| 104 |
103
|
eqcomd |
⊢ ( 𝑍 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 105 |
104
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 107 |
101 106
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 109 |
98 91 108
|
feq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) ↔ 𝐾 : 𝑌 ⟶ 𝑍 ) ) |
| 110 |
50 109
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) ) |
| 111 |
7 44 53 56 59 62 63 64 65 93 110
|
estrcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 112 |
98 71
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 113 |
111 112
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 114 |
40 52 113
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 115 |
114
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 116 |
28 115
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 117 |
116
|
3impia |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |