| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetcestrc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 2 |
|
funcsetcestrc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 3 |
|
funcsetcestrc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
| 4 |
|
funcsetcestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 5 |
|
funcsetcestrc.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 6 |
|
funcsetcestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
| 7 |
|
funcsetcestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
| 8 |
1 2 3 4 5 6 7
|
funcsetcestrc |
⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ) |
| 9 |
1 2 3 4 5 6 7
|
funcsetcestrclem8 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 12 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 13 |
12
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 14 |
1 2 3 4 5
|
funcsetcestrclem2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) |
| 18 |
7 10 11 13 15 16 17
|
elestrchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 19 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑎 ) = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) |
| 20 |
19
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑎 ) = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 22 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } |
| 23 |
22
|
1strbas |
⊢ ( 𝑎 ∈ 𝐶 → 𝑎 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 25 |
21 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 26 |
1 2 3
|
funcsetcestrclem1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑏 ) = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) |
| 27 |
26
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑏 ) = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 29 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } |
| 30 |
29
|
1strbas |
⊢ ( 𝑏 ∈ 𝐶 → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 31 |
30
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 32 |
28 31
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 33 |
25 32
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) |
| 35 |
34
|
ancomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑏 ∈ 𝐶 ∧ 𝑎 ∈ 𝐶 ) ) |
| 36 |
|
elmapg |
⊢ ( ( 𝑏 ∈ 𝐶 ∧ 𝑎 ∈ 𝐶 ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) |
| 38 |
37
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) |
| 39 |
|
equequ2 |
⊢ ( 𝑘 = ℎ → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) ∧ 𝑘 = ℎ ) → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) |
| 41 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ℎ = ℎ ) |
| 42 |
38 40 41
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) |
| 43 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 44 |
43
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 45 |
44
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
| 46 |
45
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ( ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) ) |
| 48 |
42 47
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 49 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
| 50 |
1 4
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 51 |
2 50
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 52 |
51
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐶 ↔ 𝑎 ∈ 𝑈 ) ) |
| 53 |
52
|
biimpcd |
⊢ ( 𝑎 ∈ 𝐶 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 55 |
54
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝑈 ) |
| 56 |
51
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈 ) ) |
| 57 |
56
|
biimpcd |
⊢ ( 𝑏 ∈ 𝐶 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 59 |
58
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝑈 ) |
| 60 |
1 10 49 55 59
|
setchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) = ( 𝑏 ↑m 𝑎 ) ) |
| 61 |
60
|
rexeqdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 63 |
48 62
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 64 |
63
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : 𝑎 ⟶ 𝑏 → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 65 |
33 64
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 66 |
18 65
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 67 |
66
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 68 |
|
dffo3 |
⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 69 |
9 67 68
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 70 |
69
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 71 |
2 11 49
|
isfull2 |
⊢ ( 𝐹 ( 𝑆 Full 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 |
8 70 71
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝑆 Full 𝐸 ) 𝐺 ) |