Step |
Hyp |
Ref |
Expression |
1 |
|
funcsetcestrc.s |
|- S = ( SetCat ` U ) |
2 |
|
funcsetcestrc.c |
|- C = ( Base ` S ) |
3 |
|
funcsetcestrc.f |
|- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
4 |
|
funcsetcestrc.u |
|- ( ph -> U e. WUni ) |
5 |
|
funcsetcestrc.o |
|- ( ph -> _om e. U ) |
6 |
|
funcsetcestrc.g |
|- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
7 |
|
funcsetcestrc.e |
|- E = ( ExtStrCat ` U ) |
8 |
1 2 3 4 5 6 7
|
funcsetcestrc |
|- ( ph -> F ( S Func E ) G ) |
9 |
1 2 3 4 5 6 7
|
funcsetcestrclem8 |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a G b ) : ( a ( Hom ` S ) b ) --> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
10 |
4
|
adantr |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> U e. WUni ) |
11 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
12 |
1 2 3 4 5
|
funcsetcestrclem2 |
|- ( ( ph /\ a e. C ) -> ( F ` a ) e. U ) |
13 |
12
|
adantrr |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( F ` a ) e. U ) |
14 |
1 2 3 4 5
|
funcsetcestrclem2 |
|- ( ( ph /\ b e. C ) -> ( F ` b ) e. U ) |
15 |
14
|
adantrl |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( F ` b ) e. U ) |
16 |
|
eqid |
|- ( Base ` ( F ` a ) ) = ( Base ` ( F ` a ) ) |
17 |
|
eqid |
|- ( Base ` ( F ` b ) ) = ( Base ` ( F ` b ) ) |
18 |
7 10 11 13 15 16 17
|
elestrchom |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) <-> h : ( Base ` ( F ` a ) ) --> ( Base ` ( F ` b ) ) ) ) |
19 |
1 2 3
|
funcsetcestrclem1 |
|- ( ( ph /\ a e. C ) -> ( F ` a ) = { <. ( Base ` ndx ) , a >. } ) |
20 |
19
|
adantrr |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( F ` a ) = { <. ( Base ` ndx ) , a >. } ) |
21 |
20
|
fveq2d |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( Base ` ( F ` a ) ) = ( Base ` { <. ( Base ` ndx ) , a >. } ) ) |
22 |
|
eqid |
|- { <. ( Base ` ndx ) , a >. } = { <. ( Base ` ndx ) , a >. } |
23 |
22
|
1strbas |
|- ( a e. C -> a = ( Base ` { <. ( Base ` ndx ) , a >. } ) ) |
24 |
23
|
ad2antrl |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> a = ( Base ` { <. ( Base ` ndx ) , a >. } ) ) |
25 |
21 24
|
eqtr4d |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( Base ` ( F ` a ) ) = a ) |
26 |
1 2 3
|
funcsetcestrclem1 |
|- ( ( ph /\ b e. C ) -> ( F ` b ) = { <. ( Base ` ndx ) , b >. } ) |
27 |
26
|
adantrl |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( F ` b ) = { <. ( Base ` ndx ) , b >. } ) |
28 |
27
|
fveq2d |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( Base ` ( F ` b ) ) = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) |
29 |
|
eqid |
|- { <. ( Base ` ndx ) , b >. } = { <. ( Base ` ndx ) , b >. } |
30 |
29
|
1strbas |
|- ( b e. C -> b = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) |
31 |
30
|
ad2antll |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> b = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) |
32 |
28 31
|
eqtr4d |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( Base ` ( F ` b ) ) = b ) |
33 |
25 32
|
feq23d |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h : ( Base ` ( F ` a ) ) --> ( Base ` ( F ` b ) ) <-> h : a --> b ) ) |
34 |
|
simpr |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a e. C /\ b e. C ) ) |
35 |
34
|
ancomd |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( b e. C /\ a e. C ) ) |
36 |
|
elmapg |
|- ( ( b e. C /\ a e. C ) -> ( h e. ( b ^m a ) <-> h : a --> b ) ) |
37 |
35 36
|
syl |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( b ^m a ) <-> h : a --> b ) ) |
38 |
37
|
biimpar |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> h e. ( b ^m a ) ) |
39 |
|
equequ2 |
|- ( k = h -> ( h = k <-> h = h ) ) |
40 |
39
|
adantl |
|- ( ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) /\ k = h ) -> ( h = k <-> h = h ) ) |
41 |
|
eqidd |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> h = h ) |
42 |
38 40 41
|
rspcedvd |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> E. k e. ( b ^m a ) h = k ) |
43 |
1 2 3 4 5 6
|
funcsetcestrclem6 |
|- ( ( ph /\ ( a e. C /\ b e. C ) /\ k e. ( b ^m a ) ) -> ( ( a G b ) ` k ) = k ) |
44 |
43
|
3expa |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ k e. ( b ^m a ) ) -> ( ( a G b ) ` k ) = k ) |
45 |
44
|
eqeq2d |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ k e. ( b ^m a ) ) -> ( h = ( ( a G b ) ` k ) <-> h = k ) ) |
46 |
45
|
rexbidva |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( E. k e. ( b ^m a ) h = ( ( a G b ) ` k ) <-> E. k e. ( b ^m a ) h = k ) ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> ( E. k e. ( b ^m a ) h = ( ( a G b ) ` k ) <-> E. k e. ( b ^m a ) h = k ) ) |
48 |
42 47
|
mpbird |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> E. k e. ( b ^m a ) h = ( ( a G b ) ` k ) ) |
49 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
50 |
1 4
|
setcbas |
|- ( ph -> U = ( Base ` S ) ) |
51 |
2 50
|
eqtr4id |
|- ( ph -> C = U ) |
52 |
51
|
eleq2d |
|- ( ph -> ( a e. C <-> a e. U ) ) |
53 |
52
|
biimpcd |
|- ( a e. C -> ( ph -> a e. U ) ) |
54 |
53
|
adantr |
|- ( ( a e. C /\ b e. C ) -> ( ph -> a e. U ) ) |
55 |
54
|
impcom |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> a e. U ) |
56 |
51
|
eleq2d |
|- ( ph -> ( b e. C <-> b e. U ) ) |
57 |
56
|
biimpcd |
|- ( b e. C -> ( ph -> b e. U ) ) |
58 |
57
|
adantl |
|- ( ( a e. C /\ b e. C ) -> ( ph -> b e. U ) ) |
59 |
58
|
impcom |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> b e. U ) |
60 |
1 10 49 55 59
|
setchom |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a ( Hom ` S ) b ) = ( b ^m a ) ) |
61 |
60
|
rexeqdv |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) <-> E. k e. ( b ^m a ) h = ( ( a G b ) ` k ) ) ) |
62 |
61
|
adantr |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> ( E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) <-> E. k e. ( b ^m a ) h = ( ( a G b ) ` k ) ) ) |
63 |
48 62
|
mpbird |
|- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ h : a --> b ) -> E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) |
64 |
63
|
ex |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h : a --> b -> E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) ) |
65 |
33 64
|
sylbid |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h : ( Base ` ( F ` a ) ) --> ( Base ` ( F ` b ) ) -> E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) ) |
66 |
18 65
|
sylbid |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) -> E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) ) |
67 |
66
|
ralrimiv |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> A. h e. ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) |
68 |
|
dffo3 |
|- ( ( a G b ) : ( a ( Hom ` S ) b ) -onto-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) <-> ( ( a G b ) : ( a ( Hom ` S ) b ) --> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) /\ A. h e. ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) E. k e. ( a ( Hom ` S ) b ) h = ( ( a G b ) ` k ) ) ) |
69 |
9 67 68
|
sylanbrc |
|- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a G b ) : ( a ( Hom ` S ) b ) -onto-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
70 |
69
|
ralrimivva |
|- ( ph -> A. a e. C A. b e. C ( a G b ) : ( a ( Hom ` S ) b ) -onto-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
71 |
2 11 49
|
isfull2 |
|- ( F ( S Full E ) G <-> ( F ( S Func E ) G /\ A. a e. C A. b e. C ( a G b ) : ( a ( Hom ` S ) b ) -onto-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) ) |
72 |
8 70 71
|
sylanbrc |
|- ( ph -> F ( S Full E ) G ) |