Metamath Proof Explorer


Theorem funcsetcestrclem2

Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S = SetCat U
funcsetcestrc.c C = Base S
funcsetcestrc.f φ F = x C Base ndx x
funcsetcestrc.u φ U WUni
funcsetcestrc.o φ ω U
Assertion funcsetcestrclem2 φ X C F X U

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S = SetCat U
2 funcsetcestrc.c C = Base S
3 funcsetcestrc.f φ F = x C Base ndx x
4 funcsetcestrc.u φ U WUni
5 funcsetcestrc.o φ ω U
6 1 2 3 funcsetcestrclem1 φ X C F X = Base ndx X
7 1 2 4 5 setc1strwun φ X C Base ndx X U
8 6 7 eqeltrd φ X C F X U