Step |
Hyp |
Ref |
Expression |
1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcestrcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
8 |
|
equivestrcsetc.i |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 ) |
9 |
1 2 3 4 5 6 7
|
fthestrcsetc |
⊢ ( 𝜑 → 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ) |
10 |
1 2 3 4 5 6 7
|
fullestrcsetc |
⊢ ( 𝜑 → 𝐹 ( 𝐸 Full 𝑆 ) 𝐺 ) |
11 |
2 5
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
12 |
4 11
|
eqtr4id |
⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈 ) ) |
14 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } |
15 |
14 5 8
|
1strwunbndx |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝑈 ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝑈 ) ) |
17 |
13 16
|
sylbid |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 → { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝑈 ) ) |
18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝑈 ) |
19 |
1 5
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → 𝑈 = ( Base ‘ 𝐸 ) ) |
21 |
3 20
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → 𝐵 = 𝑈 ) |
22 |
18 21
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝐵 ) |
23 |
|
fveq2 |
⊢ ( 𝑎 = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
24 |
23
|
f1oeq3d |
⊢ ( 𝑎 = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } → ( 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ↔ 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) ) |
25 |
24
|
exbidv |
⊢ ( 𝑎 = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } → ( ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑎 = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) → ( ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) ) |
27 |
|
f1oi |
⊢ ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ 𝑏 |
28 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ∈ 𝐵 ) → ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
29 |
22 28
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
30 |
14
|
1strbas |
⊢ ( 𝑏 ∈ 𝐶 → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
32 |
29 31
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) = 𝑏 ) |
33 |
32
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ↔ ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ 𝑏 ) ) |
34 |
27 33
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
35 |
|
resiexg |
⊢ ( 𝑏 ∈ V → ( I ↾ 𝑏 ) ∈ V ) |
36 |
35
|
elv |
⊢ ( I ↾ 𝑏 ) ∈ V |
37 |
|
f1oeq1 |
⊢ ( 𝑖 = ( I ↾ 𝑏 ) → ( 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ↔ ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) ) |
38 |
36 37
|
spcev |
⊢ ( ( I ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) → ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
39 |
34 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
40 |
22 26 39
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐶 ∃ 𝑎 ∈ 𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) |
42 |
9 10 41
|
3jca |
⊢ ( 𝜑 → ( 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ∧ 𝐹 ( 𝐸 Full 𝑆 ) 𝐺 ∧ ∀ 𝑏 ∈ 𝐶 ∃ 𝑎 ∈ 𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) ) |