| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcestrcsetc.e | ⊢ 𝐸  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | funcestrcsetc.s | ⊢ 𝑆  =  ( SetCat ‘ 𝑈 ) | 
						
							| 3 |  | funcestrcsetc.b | ⊢ 𝐵  =  ( Base ‘ 𝐸 ) | 
						
							| 4 |  | funcestrcsetc.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | funcestrcsetc.u | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 6 |  | funcestrcsetc.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( Base ‘ 𝑥 ) ) ) | 
						
							| 7 |  | funcestrcsetc.g | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  (  I   ↾  ( ( Base ‘ 𝑦 )  ↑m  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 8 |  | equivestrcsetc.i | ⊢ ( 𝜑  →  ( Base ‘ ndx )  ∈  𝑈 ) | 
						
							| 9 | 1 2 3 4 5 6 7 | fthestrcsetc | ⊢ ( 𝜑  →  𝐹 ( 𝐸  Faith  𝑆 ) 𝐺 ) | 
						
							| 10 | 1 2 3 4 5 6 7 | fullestrcsetc | ⊢ ( 𝜑  →  𝐹 ( 𝐸  Full  𝑆 ) 𝐺 ) | 
						
							| 11 | 2 5 | setcbas | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 4 11 | eqtr4id | ⊢ ( 𝜑  →  𝐶  =  𝑈 ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐶  ↔  𝑏  ∈  𝑈 ) ) | 
						
							| 14 |  | eqid | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } | 
						
							| 15 | 14 5 8 | 1strwunbndx | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝑈 )  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝑈 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝑈  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝑈 ) ) | 
						
							| 17 | 13 16 | sylbid | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐶  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝑈 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝑈 ) | 
						
							| 19 | 1 5 | estrcbas | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ 𝐸 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  𝑈  =  ( Base ‘ 𝐸 ) ) | 
						
							| 21 | 3 20 | eqtr4id | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  𝐵  =  𝑈 ) | 
						
							| 22 | 18 21 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝐵 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑎  =  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 24 | 23 | f1oeq3d | ⊢ ( 𝑎  =  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  →  ( 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 )  ↔  𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) ) | 
						
							| 25 | 24 | exbidv | ⊢ ( 𝑎  =  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  →  ( ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 )  ↔  ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  ∧  𝑎  =  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  →  ( ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 )  ↔  ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) ) | 
						
							| 27 |  | f1oi | ⊢ (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ 𝑏 | 
						
							| 28 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑  ∧  { 〈 ( Base ‘ ndx ) ,  𝑏 〉 }  ∈  𝐵 )  →  ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 29 | 22 28 | syldan | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 30 | 14 | 1strbas | ⊢ ( 𝑏  ∈  𝐶  →  𝑏  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  𝑏  =  ( Base ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 32 | 29 31 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  =  𝑏 ) | 
						
							| 33 | 32 | f1oeq3d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  ( (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  ↔  (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ 𝑏 ) ) | 
						
							| 34 | 27 33 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 35 |  | resiexg | ⊢ ( 𝑏  ∈  V  →  (  I   ↾  𝑏 )  ∈  V ) | 
						
							| 36 | 35 | elv | ⊢ (  I   ↾  𝑏 )  ∈  V | 
						
							| 37 |  | f1oeq1 | ⊢ ( 𝑖  =  (  I   ↾  𝑏 )  →  ( 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  ↔  (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) ) | 
						
							| 38 | 36 37 | spcev | ⊢ ( (  I   ↾  𝑏 ) : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } )  →  ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 39 | 34 38 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 } ) ) | 
						
							| 40 | 22 26 39 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐶 )  →  ∃ 𝑎  ∈  𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  𝐶 ∃ 𝑎  ∈  𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 42 | 9 10 41 | 3jca | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐸  Faith  𝑆 ) 𝐺  ∧  𝐹 ( 𝐸  Full  𝑆 ) 𝐺  ∧  ∀ 𝑏  ∈  𝐶 ∃ 𝑎  ∈  𝐵 ∃ 𝑖 𝑖 : 𝑏 –1-1-onto→ ( 𝐹 ‘ 𝑎 ) ) ) |