| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcestrcsetc.e |  |-  E = ( ExtStrCat ` U ) | 
						
							| 2 |  | funcestrcsetc.s |  |-  S = ( SetCat ` U ) | 
						
							| 3 |  | funcestrcsetc.b |  |-  B = ( Base ` E ) | 
						
							| 4 |  | funcestrcsetc.c |  |-  C = ( Base ` S ) | 
						
							| 5 |  | funcestrcsetc.u |  |-  ( ph -> U e. WUni ) | 
						
							| 6 |  | funcestrcsetc.f |  |-  ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) | 
						
							| 7 |  | funcestrcsetc.g |  |-  ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) | 
						
							| 8 |  | equivestrcsetc.i |  |-  ( ph -> ( Base ` ndx ) e. U ) | 
						
							| 9 | 1 2 3 4 5 6 7 | fthestrcsetc |  |-  ( ph -> F ( E Faith S ) G ) | 
						
							| 10 | 1 2 3 4 5 6 7 | fullestrcsetc |  |-  ( ph -> F ( E Full S ) G ) | 
						
							| 11 | 2 5 | setcbas |  |-  ( ph -> U = ( Base ` S ) ) | 
						
							| 12 | 4 11 | eqtr4id |  |-  ( ph -> C = U ) | 
						
							| 13 | 12 | eleq2d |  |-  ( ph -> ( b e. C <-> b e. U ) ) | 
						
							| 14 |  | eqid |  |-  { <. ( Base ` ndx ) , b >. } = { <. ( Base ` ndx ) , b >. } | 
						
							| 15 | 14 5 8 | 1strwunbndx |  |-  ( ( ph /\ b e. U ) -> { <. ( Base ` ndx ) , b >. } e. U ) | 
						
							| 16 | 15 | ex |  |-  ( ph -> ( b e. U -> { <. ( Base ` ndx ) , b >. } e. U ) ) | 
						
							| 17 | 13 16 | sylbid |  |-  ( ph -> ( b e. C -> { <. ( Base ` ndx ) , b >. } e. U ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ph /\ b e. C ) -> { <. ( Base ` ndx ) , b >. } e. U ) | 
						
							| 19 | 1 5 | estrcbas |  |-  ( ph -> U = ( Base ` E ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ b e. C ) -> U = ( Base ` E ) ) | 
						
							| 21 | 3 20 | eqtr4id |  |-  ( ( ph /\ b e. C ) -> B = U ) | 
						
							| 22 | 18 21 | eleqtrrd |  |-  ( ( ph /\ b e. C ) -> { <. ( Base ` ndx ) , b >. } e. B ) | 
						
							| 23 |  | fveq2 |  |-  ( a = { <. ( Base ` ndx ) , b >. } -> ( F ` a ) = ( F ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 24 | 23 | f1oeq3d |  |-  ( a = { <. ( Base ` ndx ) , b >. } -> ( i : b -1-1-onto-> ( F ` a ) <-> i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) ) | 
						
							| 25 | 24 | exbidv |  |-  ( a = { <. ( Base ` ndx ) , b >. } -> ( E. i i : b -1-1-onto-> ( F ` a ) <-> E. i i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ph /\ b e. C ) /\ a = { <. ( Base ` ndx ) , b >. } ) -> ( E. i i : b -1-1-onto-> ( F ` a ) <-> E. i i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) ) | 
						
							| 27 |  | f1oi |  |-  ( _I |` b ) : b -1-1-onto-> b | 
						
							| 28 | 1 2 3 4 5 6 | funcestrcsetclem1 |  |-  ( ( ph /\ { <. ( Base ` ndx ) , b >. } e. B ) -> ( F ` { <. ( Base ` ndx ) , b >. } ) = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 29 | 22 28 | syldan |  |-  ( ( ph /\ b e. C ) -> ( F ` { <. ( Base ` ndx ) , b >. } ) = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 30 | 14 | 1strbas |  |-  ( b e. C -> b = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ b e. C ) -> b = ( Base ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 32 | 29 31 | eqtr4d |  |-  ( ( ph /\ b e. C ) -> ( F ` { <. ( Base ` ndx ) , b >. } ) = b ) | 
						
							| 33 | 32 | f1oeq3d |  |-  ( ( ph /\ b e. C ) -> ( ( _I |` b ) : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) <-> ( _I |` b ) : b -1-1-onto-> b ) ) | 
						
							| 34 | 27 33 | mpbiri |  |-  ( ( ph /\ b e. C ) -> ( _I |` b ) : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 35 |  | resiexg |  |-  ( b e. _V -> ( _I |` b ) e. _V ) | 
						
							| 36 | 35 | elv |  |-  ( _I |` b ) e. _V | 
						
							| 37 |  | f1oeq1 |  |-  ( i = ( _I |` b ) -> ( i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) <-> ( _I |` b ) : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) ) | 
						
							| 38 | 36 37 | spcev |  |-  ( ( _I |` b ) : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) -> E. i i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 39 | 34 38 | syl |  |-  ( ( ph /\ b e. C ) -> E. i i : b -1-1-onto-> ( F ` { <. ( Base ` ndx ) , b >. } ) ) | 
						
							| 40 | 22 26 39 | rspcedvd |  |-  ( ( ph /\ b e. C ) -> E. a e. B E. i i : b -1-1-onto-> ( F ` a ) ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ph -> A. b e. C E. a e. B E. i i : b -1-1-onto-> ( F ` a ) ) | 
						
							| 42 | 9 10 41 | 3jca |  |-  ( ph -> ( F ( E Faith S ) G /\ F ( E Full S ) G /\ A. b e. C E. a e. B E. i i : b -1-1-onto-> ( F ` a ) ) ) |