| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcestrcsetc.e |
|- E = ( ExtStrCat ` U ) |
| 2 |
|
funcestrcsetc.s |
|- S = ( SetCat ` U ) |
| 3 |
|
funcestrcsetc.b |
|- B = ( Base ` E ) |
| 4 |
|
funcestrcsetc.c |
|- C = ( Base ` S ) |
| 5 |
|
funcestrcsetc.u |
|- ( ph -> U e. WUni ) |
| 6 |
|
funcestrcsetc.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
| 7 |
|
funcestrcsetc.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
| 8 |
1 2 3 4 5 6 7
|
funcestrcsetc |
|- ( ph -> F ( E Func S ) G ) |
| 9 |
1 2 3 4 5 6 7
|
funcestrcsetclem8 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> U e. WUni ) |
| 11 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 12 |
1 5
|
estrcbas |
|- ( ph -> U = ( Base ` E ) ) |
| 13 |
3 12
|
eqtr4id |
|- ( ph -> B = U ) |
| 14 |
13
|
eleq2d |
|- ( ph -> ( a e. B <-> a e. U ) ) |
| 15 |
14
|
biimpcd |
|- ( a e. B -> ( ph -> a e. U ) ) |
| 16 |
15
|
adantr |
|- ( ( a e. B /\ b e. B ) -> ( ph -> a e. U ) ) |
| 17 |
16
|
impcom |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. U ) |
| 18 |
13
|
eleq2d |
|- ( ph -> ( b e. B <-> b e. U ) ) |
| 19 |
18
|
biimpcd |
|- ( b e. B -> ( ph -> b e. U ) ) |
| 20 |
19
|
adantl |
|- ( ( a e. B /\ b e. B ) -> ( ph -> b e. U ) ) |
| 21 |
20
|
impcom |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. U ) |
| 22 |
|
eqid |
|- ( Base ` a ) = ( Base ` a ) |
| 23 |
|
eqid |
|- ( Base ` b ) = ( Base ` b ) |
| 24 |
1 10 11 17 21 22 23
|
estrchom |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( Hom ` E ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 25 |
24
|
eleq2d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( a ( Hom ` E ) b ) <-> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 26 |
1 2 3 4 5 6 7 22 23
|
funcestrcsetclem6 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` h ) = h ) |
| 27 |
26
|
3expia |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 28 |
25 27
|
sylbid |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( a ( Hom ` E ) b ) -> ( ( a G b ) ` h ) = h ) ) |
| 29 |
28
|
com12 |
|- ( h e. ( a ( Hom ` E ) b ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 30 |
29
|
adantr |
|- ( ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 31 |
30
|
impcom |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( a G b ) ` h ) = h ) |
| 32 |
24
|
eleq2d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( a ( Hom ` E ) b ) <-> k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 33 |
1 2 3 4 5 6 7 22 23
|
funcestrcsetclem6 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 34 |
33
|
3expia |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( ( Base ` b ) ^m ( Base ` a ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 35 |
32 34
|
sylbid |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( a ( Hom ` E ) b ) -> ( ( a G b ) ` k ) = k ) ) |
| 36 |
35
|
com12 |
|- ( k e. ( a ( Hom ` E ) b ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 37 |
36
|
adantl |
|- ( ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 38 |
37
|
impcom |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 39 |
31 38
|
eqeq12d |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) <-> h = k ) ) |
| 40 |
39
|
biimpd |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 41 |
40
|
ralrimivva |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> A. h e. ( a ( Hom ` E ) b ) A. k e. ( a ( Hom ` E ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 42 |
|
dff13 |
|- ( ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) <-> ( ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) /\ A. h e. ( a ( Hom ` E ) b ) A. k e. ( a ( Hom ` E ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) ) |
| 43 |
9 41 42
|
sylanbrc |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 44 |
43
|
ralrimivva |
|- ( ph -> A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 45 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
| 46 |
3 11 45
|
isfth2 |
|- ( F ( E Faith S ) G <-> ( F ( E Func S ) G /\ A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) ) |
| 47 |
8 44 46
|
sylanbrc |
|- ( ph -> F ( E Faith S ) G ) |