Step |
Hyp |
Ref |
Expression |
1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcestrcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
funcestrcsetc |
⊢ ( 𝜑 → 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ) |
9 |
1 2 3 4 5 6 7
|
funcestrcsetclem8 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
12 |
1 5
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
13 |
3 12
|
eqtr4id |
⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ 𝑈 ) ) |
15 |
14
|
biimpcd |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
18 |
13
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ 𝑈 ) ) |
19 |
18
|
biimpcd |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
21 |
20
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) |
24 |
1 10 11 17 21 22 23
|
estrchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
25 |
24
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ↔ ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
26 |
1 2 3 4 5 6 7 22 23
|
funcestrcsetclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
27 |
26
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
28 |
25 27
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
29 |
28
|
com12 |
⊢ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
30 |
29
|
adantr |
⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
31 |
30
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
32 |
24
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ↔ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
33 |
1 2 3 4 5 6 7 22 23
|
funcestrcsetclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
34 |
33
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
35 |
32 34
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
36 |
35
|
com12 |
⊢ ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
37 |
36
|
adantl |
⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
38 |
37
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
39 |
31 38
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
40 |
39
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
41 |
40
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
42 |
|
dff13 |
⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) ) |
43 |
9 41 42
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
44 |
43
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
45 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
46 |
3 11 45
|
isfth2 |
⊢ ( 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ↔ ( 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
47 |
8 44 46
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ) |