| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funfn | 
							 |-  ( Fun F <-> F Fn dom F )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpi | 
							 |-  ( Fun F -> F Fn dom F )  | 
						
						
							| 3 | 
							
								
							 | 
							rnss | 
							 |-  ( F C_ ( A X. B ) -> ran F C_ ran ( A X. B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rnxpss | 
							 |-  ran ( A X. B ) C_ B  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sstrdi | 
							 |-  ( F C_ ( A X. B ) -> ran F C_ B )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							anim12i | 
							 |-  ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F Fn dom F /\ ran F C_ B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-f | 
							 |-  ( F : dom F --> B <-> ( F Fn dom F /\ ran F C_ B ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( ( Fun F /\ F C_ ( A X. B ) ) -> F : dom F --> B )  | 
						
						
							| 9 | 
							
								
							 | 
							dmss | 
							 |-  ( F C_ ( A X. B ) -> dom F C_ dom ( A X. B ) )  | 
						
						
							| 10 | 
							
								
							 | 
							dmxpss | 
							 |-  dom ( A X. B ) C_ A  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sstrdi | 
							 |-  ( F C_ ( A X. B ) -> dom F C_ A )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							 |-  ( ( Fun F /\ F C_ ( A X. B ) ) -> dom F C_ A )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							jca | 
							 |-  ( ( Fun F /\ F C_ ( A X. B ) ) -> ( F : dom F --> B /\ dom F C_ A ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ffun | 
							 |-  ( F : dom F --> B -> Fun F )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( F : dom F --> B /\ dom F C_ A ) -> Fun F )  | 
						
						
							| 16 | 
							
								
							 | 
							fssxp | 
							 |-  ( F : dom F --> B -> F C_ ( dom F X. B ) )  | 
						
						
							| 17 | 
							
								
							 | 
							xpss1 | 
							 |-  ( dom F C_ A -> ( dom F X. B ) C_ ( A X. B ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylan9ss | 
							 |-  ( ( F : dom F --> B /\ dom F C_ A ) -> F C_ ( A X. B ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							jca | 
							 |-  ( ( F : dom F --> B /\ dom F C_ A ) -> ( Fun F /\ F C_ ( A X. B ) ) )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							impbii | 
							 |-  ( ( Fun F /\ F C_ ( A X. B ) ) <-> ( F : dom F --> B /\ dom F C_ A ) )  |