| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> P : ( 0 ... N ) --> V ) |
| 2 |
|
simp2 |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. NN0 ) |
| 3 |
|
simp1 |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> N e. NN0 ) |
| 4 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
| 5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 6 |
|
ltle |
|- ( ( I e. RR /\ N e. RR ) -> ( I < N -> I <_ N ) ) |
| 7 |
4 5 6
|
syl2anr |
|- ( ( N e. NN0 /\ I e. NN0 ) -> ( I < N -> I <_ N ) ) |
| 8 |
7
|
3impia |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I <_ N ) |
| 9 |
|
elfz2nn0 |
|- ( I e. ( 0 ... N ) <-> ( I e. NN0 /\ N e. NN0 /\ I <_ N ) ) |
| 10 |
2 3 8 9
|
syl3anbrc |
|- ( ( N e. NN0 /\ I e. NN0 /\ I < N ) -> I e. ( 0 ... N ) ) |
| 11 |
10
|
adantr |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> I e. ( 0 ... N ) ) |
| 12 |
1 11
|
ffvelcdmd |
|- ( ( ( N e. NN0 /\ I e. NN0 /\ I < N ) /\ P : ( 0 ... N ) --> V ) -> ( P ` I ) e. V ) |