| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
| 2 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ℕ0 ) |
| 3 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 4 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
| 5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 6 |
|
ltle |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) |
| 7 |
4 5 6
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) |
| 8 |
7
|
3impia |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ≤ 𝑁 ) |
| 9 |
|
elfz2nn0 |
⊢ ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ≤ 𝑁 ) ) |
| 10 |
2 3 8 9
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
| 12 |
1 11
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 𝐼 ) ∈ 𝑉 ) |