Metamath Proof Explorer


Theorem fvifeq

Description: Equality of function values with conditional arguments, see also fvif . (Contributed by Alexander van der Vekens, 21-May-2018)

Ref Expression
Assertion fvifeq
|- ( A = if ( ph , B , C ) -> ( F ` A ) = if ( ph , ( F ` B ) , ( F ` C ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( A = if ( ph , B , C ) -> ( F ` A ) = ( F ` if ( ph , B , C ) ) )
2 fvif
 |-  ( F ` if ( ph , B , C ) ) = if ( ph , ( F ` B ) , ( F ` C ) )
3 1 2 eqtrdi
 |-  ( A = if ( ph , B , C ) -> ( F ` A ) = if ( ph , ( F ` B ) , ( F ` C ) ) )