| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrnfv |  |-  ( F Fn { X , Y } -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } ) | 
						
							| 3 |  | fveq2 |  |-  ( i = X -> ( F ` i ) = ( F ` X ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( i = X -> ( x = ( F ` i ) <-> x = ( F ` X ) ) ) | 
						
							| 5 | 4 | abbidv |  |-  ( i = X -> { x | x = ( F ` i ) } = { x | x = ( F ` X ) } ) | 
						
							| 6 |  | fveq2 |  |-  ( i = Y -> ( F ` i ) = ( F ` Y ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( i = Y -> ( x = ( F ` i ) <-> x = ( F ` Y ) ) ) | 
						
							| 8 | 7 | abbidv |  |-  ( i = Y -> { x | x = ( F ` i ) } = { x | x = ( F ` Y ) } ) | 
						
							| 9 | 5 8 | iunxprg |  |-  ( ( X e. V /\ Y e. W ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) ) | 
						
							| 11 |  | iunab |  |-  U_ i e. { X , Y } { x | x = ( F ` i ) } = { x | E. i e. { X , Y } x = ( F ` i ) } | 
						
							| 12 |  | df-sn |  |-  { ( F ` X ) } = { x | x = ( F ` X ) } | 
						
							| 13 | 12 | eqcomi |  |-  { x | x = ( F ` X ) } = { ( F ` X ) } | 
						
							| 14 |  | df-sn |  |-  { ( F ` Y ) } = { x | x = ( F ` Y ) } | 
						
							| 15 | 14 | eqcomi |  |-  { x | x = ( F ` Y ) } = { ( F ` Y ) } | 
						
							| 16 | 13 15 | uneq12i |  |-  ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = ( { ( F ` X ) } u. { ( F ` Y ) } ) | 
						
							| 17 |  | df-pr |  |-  { ( F ` X ) , ( F ` Y ) } = ( { ( F ` X ) } u. { ( F ` Y ) } ) | 
						
							| 18 | 16 17 | eqtr4i |  |-  ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = { ( F ` X ) , ( F ` Y ) } | 
						
							| 19 | 10 11 18 | 3eqtr3g |  |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> { x | E. i e. { X , Y } x = ( F ` i ) } = { ( F ` X ) , ( F ` Y ) } ) | 
						
							| 20 | 2 19 | eqtrd |  |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { ( F ` X ) , ( F ` Y ) } ) | 
						
							| 21 | 20 | ex |  |-  ( ( X e. V /\ Y e. W ) -> ( F Fn { X , Y } -> ran F = { ( F ` X ) , ( F ` Y ) } ) ) |