Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnfv |
|- ( F Fn { X , Y } -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } ) |
2 |
1
|
adantl |
|- ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } ) |
3 |
|
fveq2 |
|- ( i = X -> ( F ` i ) = ( F ` X ) ) |
4 |
3
|
eqeq2d |
|- ( i = X -> ( x = ( F ` i ) <-> x = ( F ` X ) ) ) |
5 |
4
|
abbidv |
|- ( i = X -> { x | x = ( F ` i ) } = { x | x = ( F ` X ) } ) |
6 |
|
fveq2 |
|- ( i = Y -> ( F ` i ) = ( F ` Y ) ) |
7 |
6
|
eqeq2d |
|- ( i = Y -> ( x = ( F ` i ) <-> x = ( F ` Y ) ) ) |
8 |
7
|
abbidv |
|- ( i = Y -> { x | x = ( F ` i ) } = { x | x = ( F ` Y ) } ) |
9 |
5 8
|
iunxprg |
|- ( ( X e. V /\ Y e. W ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) ) |
10 |
9
|
adantr |
|- ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) ) |
11 |
|
iunab |
|- U_ i e. { X , Y } { x | x = ( F ` i ) } = { x | E. i e. { X , Y } x = ( F ` i ) } |
12 |
|
df-sn |
|- { ( F ` X ) } = { x | x = ( F ` X ) } |
13 |
12
|
eqcomi |
|- { x | x = ( F ` X ) } = { ( F ` X ) } |
14 |
|
df-sn |
|- { ( F ` Y ) } = { x | x = ( F ` Y ) } |
15 |
14
|
eqcomi |
|- { x | x = ( F ` Y ) } = { ( F ` Y ) } |
16 |
13 15
|
uneq12i |
|- ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = ( { ( F ` X ) } u. { ( F ` Y ) } ) |
17 |
|
df-pr |
|- { ( F ` X ) , ( F ` Y ) } = ( { ( F ` X ) } u. { ( F ` Y ) } ) |
18 |
16 17
|
eqtr4i |
|- ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = { ( F ` X ) , ( F ` Y ) } |
19 |
10 11 18
|
3eqtr3g |
|- ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> { x | E. i e. { X , Y } x = ( F ` i ) } = { ( F ` X ) , ( F ` Y ) } ) |
20 |
2 19
|
eqtrd |
|- ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { ( F ` X ) , ( F ` Y ) } ) |
21 |
20
|
ex |
|- ( ( X e. V /\ Y e. W ) -> ( F Fn { X , Y } -> ran F = { ( F ` X ) , ( F ` Y ) } ) ) |