Metamath Proof Explorer


Theorem rnfdmpr

Description: The range of a one-to-one function F of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Assertion rnfdmpr
|- ( ( X e. V /\ Y e. W ) -> ( F Fn { X , Y } -> ran F = { ( F ` X ) , ( F ` Y ) } ) )

Proof

Step Hyp Ref Expression
1 fnrnfv
 |-  ( F Fn { X , Y } -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } )
2 1 adantl
 |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { x | E. i e. { X , Y } x = ( F ` i ) } )
3 fveq2
 |-  ( i = X -> ( F ` i ) = ( F ` X ) )
4 3 eqeq2d
 |-  ( i = X -> ( x = ( F ` i ) <-> x = ( F ` X ) ) )
5 4 abbidv
 |-  ( i = X -> { x | x = ( F ` i ) } = { x | x = ( F ` X ) } )
6 fveq2
 |-  ( i = Y -> ( F ` i ) = ( F ` Y ) )
7 6 eqeq2d
 |-  ( i = Y -> ( x = ( F ` i ) <-> x = ( F ` Y ) ) )
8 7 abbidv
 |-  ( i = Y -> { x | x = ( F ` i ) } = { x | x = ( F ` Y ) } )
9 5 8 iunxprg
 |-  ( ( X e. V /\ Y e. W ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) )
10 9 adantr
 |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> U_ i e. { X , Y } { x | x = ( F ` i ) } = ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) )
11 iunab
 |-  U_ i e. { X , Y } { x | x = ( F ` i ) } = { x | E. i e. { X , Y } x = ( F ` i ) }
12 df-sn
 |-  { ( F ` X ) } = { x | x = ( F ` X ) }
13 12 eqcomi
 |-  { x | x = ( F ` X ) } = { ( F ` X ) }
14 df-sn
 |-  { ( F ` Y ) } = { x | x = ( F ` Y ) }
15 14 eqcomi
 |-  { x | x = ( F ` Y ) } = { ( F ` Y ) }
16 13 15 uneq12i
 |-  ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = ( { ( F ` X ) } u. { ( F ` Y ) } )
17 df-pr
 |-  { ( F ` X ) , ( F ` Y ) } = ( { ( F ` X ) } u. { ( F ` Y ) } )
18 16 17 eqtr4i
 |-  ( { x | x = ( F ` X ) } u. { x | x = ( F ` Y ) } ) = { ( F ` X ) , ( F ` Y ) }
19 10 11 18 3eqtr3g
 |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> { x | E. i e. { X , Y } x = ( F ` i ) } = { ( F ` X ) , ( F ` Y ) } )
20 2 19 eqtrd
 |-  ( ( ( X e. V /\ Y e. W ) /\ F Fn { X , Y } ) -> ran F = { ( F ` X ) , ( F ` Y ) } )
21 20 ex
 |-  ( ( X e. V /\ Y e. W ) -> ( F Fn { X , Y } -> ran F = { ( F ` X ) , ( F ` Y ) } ) )