Metamath Proof Explorer


Theorem rnfdmpr

Description: The range of a one-to-one function F of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Assertion rnfdmpr X V Y W F Fn X Y ran F = F X F Y

Proof

Step Hyp Ref Expression
1 fnrnfv F Fn X Y ran F = x | i X Y x = F i
2 1 adantl X V Y W F Fn X Y ran F = x | i X Y x = F i
3 fveq2 i = X F i = F X
4 3 eqeq2d i = X x = F i x = F X
5 4 abbidv i = X x | x = F i = x | x = F X
6 fveq2 i = Y F i = F Y
7 6 eqeq2d i = Y x = F i x = F Y
8 7 abbidv i = Y x | x = F i = x | x = F Y
9 5 8 iunxprg X V Y W i X Y x | x = F i = x | x = F X x | x = F Y
10 9 adantr X V Y W F Fn X Y i X Y x | x = F i = x | x = F X x | x = F Y
11 iunab i X Y x | x = F i = x | i X Y x = F i
12 df-sn F X = x | x = F X
13 12 eqcomi x | x = F X = F X
14 df-sn F Y = x | x = F Y
15 14 eqcomi x | x = F Y = F Y
16 13 15 uneq12i x | x = F X x | x = F Y = F X F Y
17 df-pr F X F Y = F X F Y
18 16 17 eqtr4i x | x = F X x | x = F Y = F X F Y
19 10 11 18 3eqtr3g X V Y W F Fn X Y x | i X Y x = F i = F X F Y
20 2 19 eqtrd X V Y W F Fn X Y ran F = F X F Y
21 20 ex X V Y W F Fn X Y ran F = F X F Y