Metamath Proof Explorer


Theorem imarnf1pr

Description: The image of the range of a function F under a function E if F is a function from a pair into the domain of E . (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Assertion imarnf1pr XVYWF:XYdomEE:domEREFX=AEFY=BEranF=AB

Proof

Step Hyp Ref Expression
1 ffn E:domEREFndomE
2 1 adantl F:XYdomEE:domEREFndomE
3 2 adantr F:XYdomEE:domERXVYWEFndomE
4 simpll F:XYdomEE:domERXVYWF:XYdomE
5 prid1g XVXXY
6 5 adantr XVYWXXY
7 6 adantl F:XYdomEE:domERXVYWXXY
8 4 7 ffvelcdmd F:XYdomEE:domERXVYWFXdomE
9 prid2g YWYXY
10 9 ad2antll F:XYdomEE:domERXVYWYXY
11 4 10 ffvelcdmd F:XYdomEE:domERXVYWFYdomE
12 fnimapr EFndomEFXdomEFYdomEEFXFY=EFXEFY
13 3 8 11 12 syl3anc F:XYdomEE:domERXVYWEFXFY=EFXEFY
14 13 ex F:XYdomEE:domERXVYWEFXFY=EFXEFY
15 14 adantr F:XYdomEE:domEREFX=AEFY=BXVYWEFXFY=EFXEFY
16 15 impcom XVYWF:XYdomEE:domEREFX=AEFY=BEFXFY=EFXEFY
17 ffn F:XYdomEFFnXY
18 rnfdmpr XVYWFFnXYranF=FXFY
19 17 18 syl5com F:XYdomEXVYWranF=FXFY
20 19 adantr F:XYdomEE:domERXVYWranF=FXFY
21 20 adantr F:XYdomEE:domEREFX=AEFY=BXVYWranF=FXFY
22 21 impcom XVYWF:XYdomEE:domEREFX=AEFY=BranF=FXFY
23 22 eqcomd XVYWF:XYdomEE:domEREFX=AEFY=BFXFY=ranF
24 23 imaeq2d XVYWF:XYdomEE:domEREFX=AEFY=BEFXFY=EranF
25 preq12 EFX=AEFY=BEFXEFY=AB
26 25 ad2antll XVYWF:XYdomEE:domEREFX=AEFY=BEFXEFY=AB
27 16 24 26 3eqtr3d XVYWF:XYdomEE:domEREFX=AEFY=BEranF=AB
28 27 ex XVYWF:XYdomEE:domEREFX=AEFY=BEranF=AB