| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrnfv | ⊢ ( 𝐹  Fn  { 𝑋 ,  𝑌 }  →  ran  𝐹  =  { 𝑥  ∣  ∃ 𝑖  ∈  { 𝑋 ,  𝑌 } 𝑥  =  ( 𝐹 ‘ 𝑖 ) } ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝐹  Fn  { 𝑋 ,  𝑌 } )  →  ran  𝐹  =  { 𝑥  ∣  ∃ 𝑖  ∈  { 𝑋 ,  𝑌 } 𝑥  =  ( 𝐹 ‘ 𝑖 ) } ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑖  =  𝑋  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑖  =  𝑋  →  ( 𝑥  =  ( 𝐹 ‘ 𝑖 )  ↔  𝑥  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 5 | 4 | abbidv | ⊢ ( 𝑖  =  𝑋  →  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) } ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑖  =  𝑌  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑖  =  𝑌  →  ( 𝑥  =  ( 𝐹 ‘ 𝑖 )  ↔  𝑥  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( 𝑖  =  𝑌  →  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 9 | 5 8 | iunxprg | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  →  ∪  𝑖  ∈  { 𝑋 ,  𝑌 } { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  ( { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝐹  Fn  { 𝑋 ,  𝑌 } )  →  ∪  𝑖  ∈  { 𝑋 ,  𝑌 } { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  ( { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } ) ) | 
						
							| 11 |  | iunab | ⊢ ∪  𝑖  ∈  { 𝑋 ,  𝑌 } { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  { 𝑥  ∣  ∃ 𝑖  ∈  { 𝑋 ,  𝑌 } 𝑥  =  ( 𝐹 ‘ 𝑖 ) } | 
						
							| 12 |  | df-sn | ⊢ { ( 𝐹 ‘ 𝑋 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) } | 
						
							| 13 | 12 | eqcomi | ⊢ { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) }  =  { ( 𝐹 ‘ 𝑋 ) } | 
						
							| 14 |  | df-sn | ⊢ { ( 𝐹 ‘ 𝑌 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } | 
						
							| 15 | 14 | eqcomi | ⊢ { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) }  =  { ( 𝐹 ‘ 𝑌 ) } | 
						
							| 16 | 13 15 | uneq12i | ⊢ ( { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } )  =  ( { ( 𝐹 ‘ 𝑋 ) }  ∪  { ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 17 |  | df-pr | ⊢ { ( 𝐹 ‘ 𝑋 ) ,  ( 𝐹 ‘ 𝑌 ) }  =  ( { ( 𝐹 ‘ 𝑋 ) }  ∪  { ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 18 | 16 17 | eqtr4i | ⊢ ( { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑋 ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐹 ‘ 𝑌 ) } )  =  { ( 𝐹 ‘ 𝑋 ) ,  ( 𝐹 ‘ 𝑌 ) } | 
						
							| 19 | 10 11 18 | 3eqtr3g | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝐹  Fn  { 𝑋 ,  𝑌 } )  →  { 𝑥  ∣  ∃ 𝑖  ∈  { 𝑋 ,  𝑌 } 𝑥  =  ( 𝐹 ‘ 𝑖 ) }  =  { ( 𝐹 ‘ 𝑋 ) ,  ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 20 | 2 19 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝐹  Fn  { 𝑋 ,  𝑌 } )  →  ran  𝐹  =  { ( 𝐹 ‘ 𝑋 ) ,  ( 𝐹 ‘ 𝑌 ) } ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  →  ( 𝐹  Fn  { 𝑋 ,  𝑌 }  →  ran  𝐹  =  { ( 𝐹 ‘ 𝑋 ) ,  ( 𝐹 ‘ 𝑌 ) } ) ) |