Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnfv |
⊢ ( 𝐹 Fn { 𝑋 , 𝑌 } → ran 𝐹 = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹 ‘ 𝑖 ) } ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → ran 𝐹 = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹 ‘ 𝑖 ) } ) |
3 |
|
fveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑋 ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑖 = 𝑋 → ( 𝑥 = ( 𝐹 ‘ 𝑖 ) ↔ 𝑥 = ( 𝐹 ‘ 𝑋 ) ) ) |
5 |
4
|
abbidv |
⊢ ( 𝑖 = 𝑋 → { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑖 ) } = { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } ) |
6 |
|
fveq2 |
⊢ ( 𝑖 = 𝑌 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑌 ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑖 = 𝑌 → ( 𝑥 = ( 𝐹 ‘ 𝑖 ) ↔ 𝑥 = ( 𝐹 ‘ 𝑌 ) ) ) |
8 |
7
|
abbidv |
⊢ ( 𝑖 = 𝑌 → { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑖 ) } = { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } ) |
9 |
5 8
|
iunxprg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑖 ) } = ( { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → ∪ 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑖 ) } = ( { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } ) ) |
11 |
|
iunab |
⊢ ∪ 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑖 ) } = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹 ‘ 𝑖 ) } |
12 |
|
df-sn |
⊢ { ( 𝐹 ‘ 𝑋 ) } = { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } |
13 |
12
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } = { ( 𝐹 ‘ 𝑋 ) } |
14 |
|
df-sn |
⊢ { ( 𝐹 ‘ 𝑌 ) } = { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } |
15 |
14
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } = { ( 𝐹 ‘ 𝑌 ) } |
16 |
13 15
|
uneq12i |
⊢ ( { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } ) = ( { ( 𝐹 ‘ 𝑋 ) } ∪ { ( 𝐹 ‘ 𝑌 ) } ) |
17 |
|
df-pr |
⊢ { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) } = ( { ( 𝐹 ‘ 𝑋 ) } ∪ { ( 𝐹 ‘ 𝑌 ) } ) |
18 |
16 17
|
eqtr4i |
⊢ ( { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑋 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) } |
19 |
10 11 18
|
3eqtr3g |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹 ‘ 𝑖 ) } = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) } ) |
20 |
2 19
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → ran 𝐹 = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) } ) |
21 |
20
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝐹 Fn { 𝑋 , 𝑌 } → ran 𝐹 = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) } ) ) |