Metamath Proof Explorer


Theorem rnfdmpr

Description: The range of a one-to-one function F of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Assertion rnfdmpr ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝐹 Fn { 𝑋 , 𝑌 } → ran 𝐹 = { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) } ) )

Proof

Step Hyp Ref Expression
1 fnrnfv ( 𝐹 Fn { 𝑋 , 𝑌 } → ran 𝐹 = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹𝑖 ) } )
2 1 adantl ( ( ( 𝑋𝑉𝑌𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → ran 𝐹 = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹𝑖 ) } )
3 fveq2 ( 𝑖 = 𝑋 → ( 𝐹𝑖 ) = ( 𝐹𝑋 ) )
4 3 eqeq2d ( 𝑖 = 𝑋 → ( 𝑥 = ( 𝐹𝑖 ) ↔ 𝑥 = ( 𝐹𝑋 ) ) )
5 4 abbidv ( 𝑖 = 𝑋 → { 𝑥𝑥 = ( 𝐹𝑖 ) } = { 𝑥𝑥 = ( 𝐹𝑋 ) } )
6 fveq2 ( 𝑖 = 𝑌 → ( 𝐹𝑖 ) = ( 𝐹𝑌 ) )
7 6 eqeq2d ( 𝑖 = 𝑌 → ( 𝑥 = ( 𝐹𝑖 ) ↔ 𝑥 = ( 𝐹𝑌 ) ) )
8 7 abbidv ( 𝑖 = 𝑌 → { 𝑥𝑥 = ( 𝐹𝑖 ) } = { 𝑥𝑥 = ( 𝐹𝑌 ) } )
9 5 8 iunxprg ( ( 𝑋𝑉𝑌𝑊 ) → 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥𝑥 = ( 𝐹𝑖 ) } = ( { 𝑥𝑥 = ( 𝐹𝑋 ) } ∪ { 𝑥𝑥 = ( 𝐹𝑌 ) } ) )
10 9 adantr ( ( ( 𝑋𝑉𝑌𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥𝑥 = ( 𝐹𝑖 ) } = ( { 𝑥𝑥 = ( 𝐹𝑋 ) } ∪ { 𝑥𝑥 = ( 𝐹𝑌 ) } ) )
11 iunab 𝑖 ∈ { 𝑋 , 𝑌 } { 𝑥𝑥 = ( 𝐹𝑖 ) } = { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹𝑖 ) }
12 df-sn { ( 𝐹𝑋 ) } = { 𝑥𝑥 = ( 𝐹𝑋 ) }
13 12 eqcomi { 𝑥𝑥 = ( 𝐹𝑋 ) } = { ( 𝐹𝑋 ) }
14 df-sn { ( 𝐹𝑌 ) } = { 𝑥𝑥 = ( 𝐹𝑌 ) }
15 14 eqcomi { 𝑥𝑥 = ( 𝐹𝑌 ) } = { ( 𝐹𝑌 ) }
16 13 15 uneq12i ( { 𝑥𝑥 = ( 𝐹𝑋 ) } ∪ { 𝑥𝑥 = ( 𝐹𝑌 ) } ) = ( { ( 𝐹𝑋 ) } ∪ { ( 𝐹𝑌 ) } )
17 df-pr { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) } = ( { ( 𝐹𝑋 ) } ∪ { ( 𝐹𝑌 ) } )
18 16 17 eqtr4i ( { 𝑥𝑥 = ( 𝐹𝑋 ) } ∪ { 𝑥𝑥 = ( 𝐹𝑌 ) } ) = { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) }
19 10 11 18 3eqtr3g ( ( ( 𝑋𝑉𝑌𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → { 𝑥 ∣ ∃ 𝑖 ∈ { 𝑋 , 𝑌 } 𝑥 = ( 𝐹𝑖 ) } = { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) } )
20 2 19 eqtrd ( ( ( 𝑋𝑉𝑌𝑊 ) ∧ 𝐹 Fn { 𝑋 , 𝑌 } ) → ran 𝐹 = { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) } )
21 20 ex ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝐹 Fn { 𝑋 , 𝑌 } → ran 𝐹 = { ( 𝐹𝑋 ) , ( 𝐹𝑌 ) } ) )