| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvn0elsupp |
|- ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> X e. ( G supp (/) ) ) |
| 2 |
1
|
exp43 |
|- ( B e. V -> ( X e. B -> ( G Fn B -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) ) ) |
| 3 |
2
|
3imp |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) |
| 4 |
|
simp3 |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> G Fn B ) |
| 5 |
|
simp1 |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> B e. V ) |
| 6 |
|
0ex |
|- (/) e. _V |
| 7 |
6
|
a1i |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> (/) e. _V ) |
| 8 |
|
elsuppfn |
|- ( ( G Fn B /\ B e. V /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 9 |
4 5 7 8
|
syl3anc |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 10 |
|
simpr |
|- ( ( X e. B /\ ( G ` X ) =/= (/) ) -> ( G ` X ) =/= (/) ) |
| 11 |
9 10
|
biimtrdi |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) -> ( G ` X ) =/= (/) ) ) |
| 12 |
3 11
|
impbid |
|- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) <-> X e. ( G supp (/) ) ) ) |